Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dutta, Pronoy

  • Google
  • 1
  • 6
  • 72

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Impact of Atomic Rearrangement and Single Atom Stabilization on MoSe<sub>2</sub>@NiCo<sub>2</sub>Se<sub>4</sub> Heterostructure Catalyst for Efficient Overall Water Splitting72citations

Places of action

Chart of shared publication
Sikdar, Anirban
1 / 1 shared
Oh, Yongtak
1 / 1 shared
Jha, Sambhu Nath
1 / 1 shared
Ghosh, Debasis
1 / 4 shared
Tripathi, Shilpa
1 / 1 shared
Lee, Heehyeon
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Sikdar, Anirban
  • Oh, Yongtak
  • Jha, Sambhu Nath
  • Ghosh, Debasis
  • Tripathi, Shilpa
  • Lee, Heehyeon
OrganizationsLocationPeople

article

Impact of Atomic Rearrangement and Single Atom Stabilization on MoSe<sub>2</sub>@NiCo<sub>2</sub>Se<sub>4</sub> Heterostructure Catalyst for Efficient Overall Water Splitting

  • Dutta, Pronoy
  • Sikdar, Anirban
  • Oh, Yongtak
  • Jha, Sambhu Nath
  • Ghosh, Debasis
  • Tripathi, Shilpa
  • Lee, Heehyeon
Abstract

<jats:title>Abstract</jats:title><jats:p>High overpotentials required to cross the energy barriers of both hydrogen and oxygen evolution reactions (HER and OER) limit the overall efficiency of hydrogen production by electrolysis of water. The rational design of heterostructures and anchoring single‐atom catalysts (SAC) are the two successful strategies to lower these overpotentials, but realization of such advanced nanostructures with adequate electronic control is challenging. Here, the heterostructure of edge‐oriented molybdenum selenide (MoSe<jats:sub>2</jats:sub>) and nickel‐cobalt‐selenide (NiCo<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>) realized through selenization of mixed metal oxide/hydroxide is presented. The as‐developed sheet‐on‐sheet heterostructure shows excellent HER performance, requiring an overpotential of 89 mV to get a current density 10 mA cm<jats:sup>−2</jats:sup> and a Tafel slope of 65 mV dec<jats:sup>−1</jats:sup>. Further, resultant MoSe<jats:sub>2</jats:sub>@NiCo<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub> is photochemically decorated with single‐atom iridium, which on electrochemical surface reconstruction displays outstanding OER activity, requiring only 200 and 313 mV overpotentials for 10 and 500 mA cm<jats:sup>−2</jats:sup> current densities, respectively. A full cell electrolyzer comprising of MoSe<jats:sub>2</jats:sub>@NiCo<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub> as cathode and its SAC‐Ir decorated counterpart as anode requires only 1.51 V to attain 10 mA cm<jats:sup>−2</jats:sup> current density. Density functional theory calculation reveals the importance of rational heterostructure design and synergistic electronic coupling of single atom iridium in HER and OER processes, respectively.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • molybdenum
  • nickel
  • theory
  • Oxygen
  • Hydrogen
  • density functional theory
  • cobalt
  • current density
  • Iridium