People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jacoutot, Polina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024A novel selenophene based non-fullerene acceptor for near-infrared organic photodetectors with ultra-low dark currentcitations
- 2023Enhanced sub-1 eV detection in organic photodetectors through tuning polymer energetics and microstructurecitations
- 2022Infrared Organic Photodetectors Employing Ultralow Bandgap Polymer and Non‐Fullerene Acceptors for Biometric Monitoringcitations
- 2021Ternary organic photodetectors based on pseudo-binaries nonfullerene-based acceptorscitations
Places of action
Organizations | Location | People |
---|
article
Infrared Organic Photodetectors Employing Ultralow Bandgap Polymer and Non‐Fullerene Acceptors for Biometric Monitoring
Abstract
<jats:title>Abstract</jats:title><jats:p>Recent efforts in the field of organic photodetectors (OPD) have been focused on extending broadband detection into the near‐infrared (NIR) region. Here, two blends of an ultralow bandgap push–pull polymer TQ‐T combined with state‐of‐the‐art non‐fullerene acceptors, IEICO‐4F and Y6, are compared to obtain OPDs for sensing in the NIR beyond 1100 nm, which is the cut off for benchmark Si photodiodes. It is observed that the TQ‐T:IEICO‐4F device has a superior IR responsivity (0.03 AW<jats:sup>‐1</jats:sup> at 1200 nm and −2 V bias) and can detect infrared light up to 1800 nm, while the TQ‐T:Y6 blend shows a lower responsivity of 0.01 AW<jats:sup>‐1</jats:sup>. Device physics analyses are tied with spectroscopic and morphological studies to link the superior performance of TQ‐T:IEICO‐4F OPD to its faster charge separation as well as more favorable donor–acceptor domains mixing. In the polymer blend with Y6, the formation of large agglomerates that exceed the exciton diffusion length, which leads to high charge recombination, is observed. An application of these devices as biometric sensors for real‐time heart rate monitoring via photoplethysmography, utilizing infrared light, is demonstrated.</jats:p>