People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lethien, Christophe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Nanofeather ruthenium nitride electrodes for electrochemical capacitorscitations
- 2024Direct Electrodeposition of Electrically Conducting Ni<sub>3</sub>(HITP)<sub>2</sub> MOF Nanostructures for Micro‐Supercapacitor Integrationcitations
- 2024Direct Electrodeposition of Electrically Conducting Ni 3 (HITP) 2 MOF Nanostructures for Microâ€Supercapacitor Integrationcitations
- 2024Tuning Deposition Conditions for VN Thin Films Electrodes for Microsupercapacitors: Influence of the Thicknesscitations
- 2024Control of microstructure and composition of reactively sputtered vanadium nitride thin films based on hysteresis curves and application to microsupercapacitorscitations
- 2023High Throughput Characterization Methods at the Wafer Scale for Sputtered Films Used in Micro-Supercapacitors and Li-Ion Micro-Batteries
- 2023Major Improvement in the Cycling Ability of Pseudocapacitive Vanadium Nitride Films for Micro‐Supercapacitorcitations
- 2022Sputtered (Fe,Mn)<sub>3</sub>O<sub>4</sub> Spinel Oxide Thin Films for Micro-Supercapacitorcitations
- 2022Toward Optimization of the Chemical/Electrochemical Compatibility of Halide Solid Electrolytes in All-Solid-State Batteriescitations
- 20223D LiMn 2 O 4 Thin Film Deposited by ALD: A Road toward High‐Capacity Electrode for 3D Li‐Ion Microbatteriescitations
- 20223D LiMn<sub>2</sub>O<sub>4</sub> Thin Film Deposited by ALD: A Road toward High‐Capacity Electrode for 3D Li‐Ion Microbatteriescitations
- 2022In Situ Liquid Electrochemical TEM Investigation of LiMn1.5Ni0.5O4 Thin Film Cathode for Micro‐Battery Applicationscitations
- 2022Sputtered (Fe,Mn) 3 O 4 Spinel Oxide Thin Films for Micro-Supercapacitorcitations
- 2022Three-Dimensional TiO2 Film Deposited by ALD on Porous Metallic Scaffold for 3D Li-Ion Micro-Batteries: A Road towards Ultra-High Capacity Electrodecitations
- 2022Three-Dimensional TiO2 Film Deposited by ALD on Porous Metallic Scaffold for 3D Li-Ion Micro-Batteries: A Road towards Ultra-High Capacity Electrodecitations
- 2021Influence of ion implantation on the charge storage mechanism of vanadium nitride pseudocapacitive thin filmscitations
- 2019Fast electrochemical storage process in sputtered Nb<sub>2</sub>O<sub>5</sub> porous thin filmscitations
- 2019Fast Electrochemical Storage Process in Sputtered Nb2O5 Porous Thin Filmscitations
- 2019Fast electrochemical storage process in sputtered Nb 2 O 5 porous thin filmscitations
- 2018On chip interdigitated micro-supercapacitors based on sputtered bifunctional vanadium nitride thin films with finely tuned inter- and intracolumnar porositiescitations
- 2017Sputtered titanium carbide thick film for high areal energy on chip carbon-based micro-supercapacitorscitations
- 2017Sputtered titanium carbide thick film for high areal energy on chip carbon-based micro-supercapacitorscitations
- 2017High areal energy 3D-interdigitated micro-supercapacitors in aqueous and ionic liquid electrolytescitations
- 2016Electrochemical behavior of high performance on-chip porous carbon films for micro-supercapacitors applications in organic electrolytescitations
- 2016Electrochemical behavior of high performance on-chip porous carbon films for micro-supercapacitors applications in organic electrolytescitations
- 2014Step-conformal deposition of TiO2 and MnO2 electrodes on advanced silicon microstructures for 3D Li-ion microbatteries and micro-supercapacitors
Places of action
Organizations | Location | People |
---|
article
3D LiMn<sub>2</sub>O<sub>4</sub> Thin Film Deposited by ALD: A Road toward High‐Capacity Electrode for 3D Li‐Ion Microbatteries
Abstract
Miniaturized electronics suffer from a lack of energy autonomy. In that context, the fabrication of lithium-ion solid-state microbatteries with high performance is mandatory for powering the next generation of portable electronic devices. Here, the fabrication of a thin film positive electrode for 3D Li-ion microbatteries made by the atomic layer deposition (ALD) method and in situ lithiation step is demonstrated. The 3D electrodes based on spinel LiMn2 O4 films operate at high working potential (4.1 V vs Li/Li+ ) and are capable of delivering a remarkable surface capacity (≈180 μAh cm-2 ) at low C-rate while maintaining more than 40 μAh cm-2 at C/2 (time constant = 2 h). Both the thickness of the electrode material and the 3D gain of the template are carefully tuned to maximize the electrode performance. Advanced characterization techniques such as transmission electron and X-ray transmission microscopies are proposed as perfect tools to study the conformality of the deposited films and the interfaces between each layer: no interdiffusion or segregation are observed. This work represents a major issue towards the fabrication of 3D-lithiated electrode by ALD-without any prelithiation step by electrochemical technique-making it an attractive solution for the fabrication of 3D Li-ion solid-state microbatteries with semiconductor processing methods.