Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Guo, Yong

  • Google
  • 5
  • 30
  • 149

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Influence of Chain Length of Gradient and Block Copoly(2-oxazoline)s on Self-Assembly and Drug Encapsulation29citations
  • 2022Influence of chain length of gradient and block copoly(2-oxazoline)s on self-assembly and drug encapsulation29citations
  • 2022Influence of Chain Length of Gradient and Block Copoly(2-oxazoline)s on Self-Assembly and Drug Encapsulation29citations
  • 2022Influence of Chain Length of Gradient and Block Copoly(2‐oxazoline)s on Self‐Assembly and Drug Encapsulation29citations
  • 2020Iron Heterogeneity in Early Active Multiple Sclerosis Lesions.33citations

Places of action

Chart of shared publication
Zhang, Hongbo
4 / 8 shared
Gedda, Lars
4 / 5 shared
Bardoula, Valentin
4 / 5 shared
Edwards, Katarina
3 / 6 shared
Mun, Grigoriy A.
4 / 5 shared
Zhou, Junnian
4 / 4 shared
Radulescu, Aurel
4 / 29 shared
Vuorimaa-Laukkanen, Elina
3 / 6 shared
Nardello-Rataj, Véronique
2 / 2 shared
Sedlacek, Ondrej
4 / 10 shared
Hoogenboom, Richard
4 / 45 shared
Filippov, Sergey
4 / 4 shared
Edwards, David
1 / 11 shared
Rataj, Véronique
1 / 2 shared
Vuorimaalaukkanen, Elina
1 / 1 shared
Nardellorataj, Véronique
1 / 1 shared
Lassmann, H.
1 / 1 shared
Rc, Adiele
1 / 1 shared
Ca, Robinson
1 / 1 shared
Brück, W.
1 / 1 shared
Jm, Frischer
1 / 1 shared
Mj, Pushie
1 / 1 shared
Sd, Weigand
1 / 1 shared
Kl, Furber
1 / 1 shared
Pd, Fitz-Gibbon
1 / 1 shared
Sm, Webb
1 / 1 shared
Popescu, Bogdan
1 / 2 shared
Cf, Lucchinetti
1 / 1 shared
Je, Parisi
1 / 1 shared
Tham, M.
1 / 1 shared
Chart of publication period
2023
2022
2020

Co-Authors (by relevance)

  • Zhang, Hongbo
  • Gedda, Lars
  • Bardoula, Valentin
  • Edwards, Katarina
  • Mun, Grigoriy A.
  • Zhou, Junnian
  • Radulescu, Aurel
  • Vuorimaa-Laukkanen, Elina
  • Nardello-Rataj, Véronique
  • Sedlacek, Ondrej
  • Hoogenboom, Richard
  • Filippov, Sergey
  • Edwards, David
  • Rataj, Véronique
  • Vuorimaalaukkanen, Elina
  • Nardellorataj, Véronique
  • Lassmann, H.
  • Rc, Adiele
  • Ca, Robinson
  • Brück, W.
  • Jm, Frischer
  • Mj, Pushie
  • Sd, Weigand
  • Kl, Furber
  • Pd, Fitz-Gibbon
  • Sm, Webb
  • Popescu, Bogdan
  • Cf, Lucchinetti
  • Je, Parisi
  • Tham, M.
OrganizationsLocationPeople

article

Influence of Chain Length of Gradient and Block Copoly(2‐oxazoline)s on Self‐Assembly and Drug Encapsulation

  • Zhang, Hongbo
  • Gedda, Lars
  • Bardoula, Valentin
  • Edwards, Katarina
  • Mun, Grigoriy A.
  • Zhou, Junnian
  • Radulescu, Aurel
  • Guo, Yong
  • Vuorimaalaukkanen, Elina
  • Sedlacek, Ondrej
  • Nardellorataj, Véronique
  • Hoogenboom, Richard
  • Filippov, Sergey
Abstract

<jats:title>Abstract</jats:title><jats:p>Amphiphilic gradient copolymers represent a promising alternative to extensively used block copolymers due to their facile one‐step synthesis by statistical copolymerization of monomers of different reactivity. Herein, an in‐depth analysis is provided of micelles based on amphiphilic gradient poly(2‐oxazoline)s with different chain lengths to evaluate their potential for micellar drug delivery systems and compare them to the analogous diblock copolymer micelles. Size, morphology, and stability of self‐assembled nanoparticles, loading of hydrophobic drug curcumin, as well as cytotoxicities of the prepared nanoformulations are examined using copoly(2‐oxazoline)s with varying chain lengths and comonomer ratios. In addition to several interesting differences between the two copolymer architecture classes, such as more compact self‐assembled structures with faster exchange dynamics for the gradient copolymers, it is concluded that gradient copolymers provide stable curcumin nanoformulations with comparable drug loadings to block copolymer systems and benefit from more straightforward copolymer synthesis. The study demonstrates the potential of amphiphilic gradient copolymers as a versatile platform for the synthesis of new polymer therapeutics.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • copolymer
  • block copolymer
  • gradient copolymer