People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pumera, Martin
Brno University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 20243D printing of MAX/PLA filament: Electrochemical in-situ etching for enhanced energy conversion and storagecitations
- 2023Heterolayered carbon allotrope architectonics via multi-material 3D printing for advanced electrochemical devicescitations
- 2022Functional metal-based 3D-printed electronics engineering: Tunability and bio-recognitioncitations
- 2022Hierarchical Atomic Layer Deposited V<sub>2</sub>O<sub>5</sub> on 3D Printed Nanocarbon Electrodes for High‐Performance Aqueous Zinc‐Ion Batteriescitations
- 2022Microrobotic carrier with enzymatically encoded drug release in the presence of pancreatic cancer cells via programmed self-destructioncitations
- 2022Versatile Design of Functional Organic-Inorganic 3D-Printed (Opto)Electronic Interfaces with Custom Catalytic Activitycitations
- 2021Organic photoelectrode engineering: accelerating photocurrent generation via donor-acceptor interactions and surface-assisted synthetic approachcitations
- 2021Organic photoelectrode engineering:accelerating photocurrent generationviadonor-acceptor interactions and surface-assisted synthetic approachcitations
- 2021Metal-plated 3D-printed electrode for electrochemical detection of carbohydratescitations
- 2021Atomic layer deposition of photoelectrocatalytic material on 3D-printed nanocarbon structures ; Depozice atomárních vrstev fotoelektrokatalytického materiálu na 3D tištěné uhlíkové nanostruktury.citations
- 20172H → 1T phase engineering of layered tantalum disulphides in electrocatalysis: oxygen reduction reactioncitations
- 2017Surface properties of MoS2 probed by inverse gas chromatography and their impact on electrocatalytic propertiescitations
- 2011Electron hopping rate measurements in ITO junctions: Charge diffusion in a layer-by-layer deposited ruthenium(II)-bis(benzimidazolyl)pyridine-phosphonate-TiO2 filmcitations
- 2005Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracercitations
- 2005Glucose biosensor based on carbon nanotube epoxy compositescitations
Places of action
Organizations | Location | People |
---|
article
Hierarchical Atomic Layer Deposited V<sub>2</sub>O<sub>5</sub> on 3D Printed Nanocarbon Electrodes for High‐Performance Aqueous Zinc‐Ion Batteries
Abstract
<jats:title>Abstract</jats:title><jats:p>Aqueous rechargeable zinc‐ion batteries (ARZIBs) are promising energy storage systems owing to their ecofriendliness, safety, and cost‐efficiency. However, the sluggish Zn<jats:sup>2+</jats:sup> diffusion kinetics originated from its inherent large atomic mass and high polarization remains an ongoing challenge. To this end, electrodes with 3D architectures and high porosity are highly desired. This work reports a rational design and fabrication of hierarchical core–shell structured cathodes (3D@V<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub>) for ARZIBs by integrating fused deposition modeling (FDM) 3D‐printing with atomic layer deposition (ALD). The 3D‐printed porous carbon network provides an entangled electron conductive core and interconnected ion diffusion channels, whereas ALD‐coated V<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> serves as an active shell without sacrificing the porosity for facilitated Zn<jats:sup>2+</jats:sup> diffusion. This endows the 3D@V<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> cathode with high specific capacity (425 mAh g<jats:sup>−1</jats:sup> at 0.3 A g<jats:sup>−1</jats:sup>), competitive energy and power densities (316 Wh Kg<jats:sup>−1</jats:sup> at 213 W kg<jats:sup>−1</jats:sup> and 163 Wh Kg<jats:sup>−1</jats:sup> at 3400 W kg<jats:sup>−1</jats:sup>), and good rate performance (221 mAh g<jats:sup>−1</jats:sup> at 4.8 A g<jats:sup>−1</jats:sup>). The developed 3D@V<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> cathode provides a promising model for customized and scalable battery electrode engineering technology. As the ALD‐coated layer determines the functional properties, the proposed strategy shows a promising prospect of FDM 3D printing using 1D carbon materials for future energy storage.</jats:p>