Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Liptonduffin, Josh

  • Google
  • 1
  • 11
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Identification of Topotactic Surface‐Confined Ullmann‐Polymerization11citations

Places of action

Chart of shared publication
Dettmann, Dominik
1 / 3 shared
Contini, Giorgio
1 / 7 shared
Galeotti, Gianluca
1 / 6 shared
Floreano, Luca
1 / 12 shared
Fagotrevurat, Yannick
1 / 1 shared
Tomellini, Massimo
1 / 8 shared
Maclean, Oliver
1 / 3 shared
Giovannantonio, Marco Di
1 / 1 shared
Verdini, Alberto
1 / 11 shared
Rosei, Federico
1 / 17 shared
Perepichka, Dmitrii F.
1 / 6 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Dettmann, Dominik
  • Contini, Giorgio
  • Galeotti, Gianluca
  • Floreano, Luca
  • Fagotrevurat, Yannick
  • Tomellini, Massimo
  • Maclean, Oliver
  • Giovannantonio, Marco Di
  • Verdini, Alberto
  • Rosei, Federico
  • Perepichka, Dmitrii F.
OrganizationsLocationPeople

article

Identification of Topotactic Surface‐Confined Ullmann‐Polymerization

  • Dettmann, Dominik
  • Contini, Giorgio
  • Galeotti, Gianluca
  • Floreano, Luca
  • Fagotrevurat, Yannick
  • Tomellini, Massimo
  • Maclean, Oliver
  • Liptonduffin, Josh
  • Giovannantonio, Marco Di
  • Verdini, Alberto
  • Rosei, Federico
  • Perepichka, Dmitrii F.
Abstract

<jats:title>Abstract</jats:title><jats:p>On‐surface Ullmann coupling is an established method for the synthesis of 1D and 2D organic structures. A key limitation to obtaining ordered polymers is the uncertainty in the final structure for coupling via random diffusion of reactants over the substrate, which leads to polymorphism and defects. Here, a topotactic polymerization on Cu(110) in a series of differently‐halogenated para‐phenylenes is identified, where the self‐assembled organometallic (OM) reactants of diiodobenzene couple directly into a single, deterministic product, whereas the other precursors follow a diffusion driven reaction. The topotactic mechanism is the result of the structure of the iodine on Cu(110), which controls the orientation of the OM reactants and intermediates to be the same as the final polymer chains. Temperature‐programmed X‐ray photoelectron spectroscopy and kinetic modeling reflect the differences in the polymerization regimes, and the effects of the OM chain alignments and halogens are disentangled by Nudged Elastic Band calculations. It is found that the repulsion or attraction between chains and halogens drive the polymerization to be either diffusive or topotactic. These results provide detailed insights into on‐surface reaction mechanisms and prove the possibility of harnessing topotactic reactions in surface‐confined Ullmann polymerization.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • defect
  • random
  • photoelectron spectroscopy
  • organometallic