People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zbořil, Radek
Technical University of Ostrava
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Unveiling the potential of covalent organic frameworks for energy storage: Developments, challenges, and future prospectscitations
- 2023TiO2 nanotube arrays decorated with Ir nanoparticles for enhanced hydrogen evolution electrocatalysis
- 2022Intermetallic Copper‐Based Electride Catalyst with High Activity for C–H Oxidation and Cycloaddition of CO<sub>2</sub> into Epoxidescitations
- 2022Band gap and Morphology Engineering of Hematite Nanoflakes from an Ex Situ Sn Doping for Enhanced Photoelectrochemical Water Splittingcitations
- 2022Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologiescitations
- 2021Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammoniacitations
- 2021Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitorscitations
- 2021Emerging MXene@Metal-Organic Framework Hybridscitations
- 2020Controlling phase fraction and crystal orientation via thermal oxidation of iron foils for enhanced photoelectrochemical performancecitations
- 2020Metal Halide Perovskite@Metal-Organic Framework Hybridscitations
- 2020High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticlescitations
- 2019Crystal Structure‐ and Morphology‐Driven Electrochemistry of Iron Oxide Nanoparticles in Hydrogen Peroxide Detectioncitations
- 2019Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Productioncitations
- 2016Advanced Sensing of Antibiotics with Magnetic Gold Nanocomposite: Electrochemical Detection of Chloramphenicolcitations
- 2015Direct evidence of Fe(v) and Fe(iv) intermediates during reduction of Fe(vi) to Fe(iii): a nuclear forward scattering of synchrotron radiation approachcitations
- 2013Thermal decomposition of [Co(en)3][Fe(CN)6]∙ 2H2O: Topotactic dehydration process, valence and spin exchange mechanism elucidation
- 2006Phase composition of steel–enamel interfaces: Effects of chemical pre-treatmentcitations
Places of action
Organizations | Location | People |
---|
article
Metal Halide Perovskite@Metal-Organic Framework Hybrids
Abstract
<p>Metal halide perovskites (MHPs) have excellent optoelectronic and photovoltaic applications because of their cost-effectiveness, tunable emission, high photoluminescence quantum yields, and excellent charge carrier properties. However, the potential applications of the entire MHP family are facing a major challenge arising from its weak resistance to moisture, polar solvents, temperature, and light exposure. A viable strategy to enhance the stability of MHPs could lie in their incorporation into a porous template. Metal-organic frameworks (MOFs) have outstanding properties, with a unique network of ordered/functional pores, which render them promising for functioning as such a template, accommodating a wide range of MHPs to the nanosized region, alongside minimizing particle aggregation and enhancing the stability of the entrapped species. This review highlights recent advances in design strategies, synthesis, characterization, and properties of various hybrids of MOFs with MHPs. Particular attention is paid to a critical review of the emergence of MHP@MOF for comprehensive studies of next-generation materials for various technological applications including sensors, photocatalysis, encryption/decryption, light-emitting diodes, and solar cells. Finally, by summarizing the state-of-the-art, some promising future applications of reported hybrids are proposed. Considering the inherent correlation and synergic functionalities of MHPs and MOFs, further advancement; new functional materials; and applications can be achieved through designing MHP@MOF hybrids.</p>