Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Forti, Stiven

  • Google
  • 17
  • 58
  • 3129

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2024Decoupled High‐Mobility Graphene on Cu(111)/Sapphire via Chemical Vapor Deposition2citations
  • 2024Heterocontact-Triggered 1H to 1T′ Phase Transition in CVD-Grown Monolayer MoTe2 : Implications for Low Contact Resistance Electronic Devices3citations
  • 2024Heterocontact-Triggered 1H to 1T' Phase Transition in CVD-Grown Monolayer MoTe2: Implications for Low Contact Resistance Electronic Devices3citations
  • 2023Industrial Graphene Coating of Low-Voltage Copper Wires for Power Distribution5citations
  • 2022Industrial graphene coating of low-voltage copper wires for power distribution1citations
  • 2020Ultrafast, Zero-Bias, Graphene Photodetectors with Polymeric Gate Dielectric on Passive Photonic Waveguides.citations
  • 2020Production and processing of graphene and related materialscitations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materialscitations
  • 2019Wafer-Scale Synthesis of Graphene on Sapphire: Toward Fab-Compatible Graphene84citations
  • 2019Wafer-Scale Synthesis of Graphene on Sapphire: Toward Fab-Compatible Graphene84citations

Places of action

Chart of shared publication
Taniguchi, Takashi
1 / 58 shared
Ochapski, Michal W.
1 / 1 shared
Mishra, Neeraj
13 / 20 shared
Beltram, Fabio
1 / 10 shared
Ivanov, Yurii P.
1 / 26 shared
Mišeikis, Vaidotas
3 / 3 shared
Divitini, Giorgio
1 / 37 shared
Piccinini, Giulia
2 / 2 shared
Martini, Leonardo
8 / 10 shared
Gebeyehu, Zewdu M.
4 / 9 shared
Watanabe, Kenji
1 / 49 shared
Pezzini, Sergio
2 / 6 shared
Coletti, Camilla
17 / 24 shared
Rossi, Antonio
10 / 11 shared
Boschi, Alex
1 / 2 shared
Calandra, Matteo
2 / 15 shared
Khaustov, Vladislav O.
2 / 3 shared
Köster, Janis
1 / 6 shared
Kaiser, Ute
11 / 50 shared
Marini, Giovanni
2 / 4 shared
Convertino, Domenica
2 / 4 shared
Zakharov, Alexei A.
2 / 7 shared
Mohn, Michael J.
2 / 2 shared
Pace, Simona
2 / 3 shared
Koster, Janis
1 / 1 shared
Perry, Matthew
2 / 2 shared
Lanza, Arianna
2 / 6 shared
Teo, Kenneth B. K.
10 / 14 shared
Vlamidis, Ylea
2 / 4 shared
La Sala, Marco
1 / 1 shared
Miseikis, Vaidotas
10 / 12 shared
Jouvray, Alex
2 / 2 shared
Gemmi, Mauro
2 / 29 shared
Sala, Marco La
1 / 1 shared
Legagneux, Pierre
1 / 8 shared
Montanaro, Alberto
1 / 1 shared
Terrés, Bernat
1 / 1 shared
Giambra, Marco Angelo
1 / 2 shared
Romagnoli, Marco
1 / 1 shared
Hamidouche, Louiza
1 / 1 shared
Marconi, Simone
1 / 1 shared
Ferrari, Andrea
1 / 1 shared
Koppens, Frank
1 / 1 shared
Sorianello, Vito
1 / 1 shared
Fabbri, Filippo
3 / 12 shared
Goykhman, Ilya
1 / 2 shared
Bøggild, Peter
8 / 46 shared
Conran, Ben R.
2 / 3 shared
Flege, Jan I.
2 / 2 shared
Jessen, Bjarke Sørensen
1 / 1 shared
Aliaj, Ilirjan
2 / 2 shared
Mcaleese, Clifford
2 / 6 shared
Whelan, Patrick Rebsdorf
2 / 12 shared
Roddaro, Stefano
2 / 3 shared
Shivayogimath, Abhay
2 / 6 shared
Falta, Jens
2 / 5 shared
Buß, Lars
2 / 3 shared
Sørensen Jessen, Bjarke
1 / 2 shared
Chart of publication period
2024
2023
2022
2020
2019

Co-Authors (by relevance)

  • Taniguchi, Takashi
  • Ochapski, Michal W.
  • Mishra, Neeraj
  • Beltram, Fabio
  • Ivanov, Yurii P.
  • Mišeikis, Vaidotas
  • Divitini, Giorgio
  • Piccinini, Giulia
  • Martini, Leonardo
  • Gebeyehu, Zewdu M.
  • Watanabe, Kenji
  • Pezzini, Sergio
  • Coletti, Camilla
  • Rossi, Antonio
  • Boschi, Alex
  • Calandra, Matteo
  • Khaustov, Vladislav O.
  • Köster, Janis
  • Kaiser, Ute
  • Marini, Giovanni
  • Convertino, Domenica
  • Zakharov, Alexei A.
  • Mohn, Michael J.
  • Pace, Simona
  • Koster, Janis
  • Perry, Matthew
  • Lanza, Arianna
  • Teo, Kenneth B. K.
  • Vlamidis, Ylea
  • La Sala, Marco
  • Miseikis, Vaidotas
  • Jouvray, Alex
  • Gemmi, Mauro
  • Sala, Marco La
  • Legagneux, Pierre
  • Montanaro, Alberto
  • Terrés, Bernat
  • Giambra, Marco Angelo
  • Romagnoli, Marco
  • Hamidouche, Louiza
  • Marconi, Simone
  • Ferrari, Andrea
  • Koppens, Frank
  • Sorianello, Vito
  • Fabbri, Filippo
  • Goykhman, Ilya
  • Bøggild, Peter
  • Conran, Ben R.
  • Flege, Jan I.
  • Jessen, Bjarke Sørensen
  • Aliaj, Ilirjan
  • Mcaleese, Clifford
  • Whelan, Patrick Rebsdorf
  • Roddaro, Stefano
  • Shivayogimath, Abhay
  • Falta, Jens
  • Buß, Lars
  • Sørensen Jessen, Bjarke
OrganizationsLocationPeople

article

Wafer-Scale Synthesis of Graphene on Sapphire: Toward Fab-Compatible Graphene

  • Conran, Ben R.
  • Flege, Jan I.
  • Mishra, Neeraj
  • Forti, Stiven
  • Aliaj, Ilirjan
  • Sørensen Jessen, Bjarke
  • Teo, Kenneth B. K.
  • Mcaleese, Clifford
  • Bøggild, Peter
  • Martini, Leonardo
  • Whelan, Patrick Rebsdorf
  • Fabbri, Filippo
  • Roddaro, Stefano
  • Shivayogimath, Abhay
  • Coletti, Camilla
  • Falta, Jens
  • Buß, Lars
Abstract

The adoption of graphene in electronics, optoelectronics, and photonics is hindered by the difficulty in obtaining high-quality material on technologically relevant substrates, over wafer-scale sizes, and with metal contamination levels compatible with industrial requirements. To date, the direct growth of graphene on insulating substrates has proved to be challenging, usually requiring metal-catalysts or yielding defective graphene. In this work, a metal-free approach implemented in commercially available reactors to obtain high-quality monolayer graphene on c-plane sapphire substrates via chemical vapor deposition is demonstrated. Low energy electron diffraction, low energy electron microscopy, and scanning tunneling microscopy measurements identify the Al-rich reconstruction (√31×√31) R ± 9° of sapphire to be crucial for obtaining epitaxial graphene. Raman spectroscopy and electrical transport measurements reveal high-quality graphene with mobilities consistently above 2000 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>. The process is scaled up to 4 and 6 in. wafers sizes and metal contamination levels are retrieved to be within the limits for back-end-of-line integration. The growth process introduced here establishes a method for the synthesis of wafer-scale graphene films on a technologically viable basis.

Topics
  • impedance spectroscopy
  • electron microscopy
  • Raman spectroscopy
  • chemical vapor deposition
  • low energy electron diffraction
  • scanning tunneling microscopy