People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fabbri, Filippo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Influence of the Carrier Gas Flow in the CVD Synthesis of 2-Dimensional MoS2 Based on the Spin-Coating of Liquid Molybdenum Precursorscitations
- 2022In-vivo, in-situ, light-tunable manipulation of cells' biomechanics on a photoactive azobenzene bio-substrate
- 2022Optically tunable metal-dielectric diffractive structurescitations
- 20223D arrangement of epitaxial graphene conformally grown on porousified crystalline SiCcitations
- 2020Ultrafast, Zero-Bias, Graphene Photodetectors with Polymeric Gate Dielectric on Passive Photonic Waveguides.
- 2020Transforming colloidal Cs4PbBr6 nanocrystals with poly(maleic anhydride-alt-1-octadecene) into stable CsPbBr3 perovskite emitters through intermediate heterostructurescitations
- 2020Effect of Chemical Vapor Deposition WS2 on Viability and Differentiation of SH-SY5Y Cellscitations
- 2019Wafer-Scale Synthesis of Graphene on Sapphire: Toward Fab-Compatible Graphenecitations
- 2019Wafer-Scale Synthesis of Graphene on Sapphire: Toward Fab-Compatible Graphenecitations
- 2016Controlling the Surface Energetics and Kinetics of Hematite Photoanodes Through Few Atomic Layers of NiO xcitations
- 2009Growth and characterization of b-SiC and SiO2/b-SiC core-shell nanowires
- 2009βC-SiC/SiO2 core-shell nanowires studied by TEM and SEM-CL
Places of action
Organizations | Location | People |
---|
article
Wafer-Scale Synthesis of Graphene on Sapphire: Toward Fab-Compatible Graphene
Abstract
The adoption of graphene in electronics, optoelectronics, and photonics is hindered by the difficulty in obtaining high-quality material on technologically relevant substrates, over wafer-scale sizes, and with metal contamination levels compatible with industrial requirements. To date, the direct growth of graphene on insulating substrates has proved to be challenging, usually requiring metal-catalysts or yielding defective graphene. In this work, a metal-free approach implemented in commercially available reactors to obtain high-quality monolayer graphene on c-plane sapphire substrates via chemical vapor deposition is demonstrated. Low energy electron diffraction, low energy electron microscopy, and scanning tunneling microscopy measurements identify the Al-rich reconstruction (√31×√31) R ± 9° of sapphire to be crucial for obtaining epitaxial graphene. Raman spectroscopy and electrical transport measurements reveal high-quality graphene with mobilities consistently above 2000 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>. The process is scaled up to 4 and 6 in. wafers sizes and metal contamination levels are retrieved to be within the limits for back-end-of-line integration. The growth process introduced here establishes a method for the synthesis of wafer-scale graphene films on a technologically viable basis.