People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lloyd, Jonathan R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023An investigation into the role of c-type cytochromes and extracellular flavins in the bioreduction of uranyl(VI) by <i>Shewanella oneidensis</i> using fluorescence spectroscopy and microscopycitations
- 2023Anaerobic biodegradation of citric acid in the presence of Ni and U at alkaline pH; impact on metal fate and speciationcitations
- 2023Copper bioreduction and nanoparticle synthesis by an enrichment culture from a former copper minecitations
- 2020Biomineralization of Cu2S nanoparticles by Geobacter sulfurreducenscitations
- 2020Enhanced microbial degradation of irradiated cellulose under hyperalkaline conditionscitations
- 2019Bioelectrochemical treatment and recovery of copper from distillery waste effluents using power and voltage control strategiescitations
- 2018Combined chemical and microbiological degradation of tetrachloroethene during the application of Carbo-Iron at a contaminated field sitecitations
- 2018Response of Bentonite Microbial Communities to Stresses Relevant to Geodisposal of Radioactive Wastecitations
- 2018A Novel Adaptation Mechanism Underpinning Algal Colonization of a Nuclear Fuel Storage Pondcitations
- 2018Biosynthesis and Characterization of Copper Nanoparticles Using Shewanella oneidensis: Application for Click Chemistrycitations
- 2016Bacterial Diversity in the Hyperalkaline Allas Springs (Cyprus), a Natural Analogue for Cementitious Radioactive Waste Repositorycitations
- 2016Imaging the hydrated microbe-metal interface using nanoscale spectrum imagingcitations
- 2016Biogenic methane in shale gas and coal bed methanecitations
- 2015Microbial degradation of cellulosic material under intermediate-level waste simulated conditionscitations
- 2014The Impact of γ Radiation on the Bioavailability of Fe(III) Minerals for Microbial Respirationcitations
- 2014Biosynthesis of zinc substituted magnetite nanoparticles with enhanced magnetic propertiescitations
- 2014Biosynthesis of zinc substituted magnetite nanoparticles with enhanced magnetic propertiescitations
- 2014An Electrochemical Study of the Influence of Marinobacter aquaeolei on the Alteration of Hydrothermal Chalcopyrite (CuFeS2) and Pyrite (FeS2) under Circumneutral Conditionscitations
- 2011Geochemical and microbial controls of the decomposition of depleted uranium in the environment: Experimental studies using soil microorganismscitations
- 2010Phenotypic characterization of shewanella oneidensis MR-1 under aerobic and anaerobic growth conditions by using fourier transform infrared spectroscopy and high-performance liquid chromatography analysescitations
- 2010Impact of silver(I) on the metabolism of Shewanella oneidensiscitations
- 2009Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic propertiescitations
- 2009Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic propertiescitations
- 2008Biomineralization: Linking the fossil record to the production of high value functional materialscitations
- 2007Time-resolved synchrotron X-ray powder diffraction study of biogenic nanomagnetitecitations
- 2005Reduction of uranium(VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducenscitations
- 2005Developments in bioremediation of soils and sediments polluted with metals and radionuclides: 2. Field research on bioremediation of metals and radionuclidescitations
Places of action
Organizations | Location | People |
---|
article
Biosynthesis and Characterization of Copper Nanoparticles Using Shewanella oneidensis: Application for Click Chemistry
Abstract
<p>Copper nanoparticles (Cu-NPs) have a wide range of applications as heterogeneous catalysts. In this study, a novel green biosynthesis route for producing Cu-NPs using the metal-reducing bacterium, Shewanella oneidensis is demonstrated. Thin section transmission electron microscopy shows that the Cu-NPs are predominantly intracellular and present in a typical size range of 20–40 nm. Serial block-face scanning electron microscopy demonstrates the Cu-NPs are well-dispersed across the 3D structure of the cells. X-ray absorption near-edge spectroscopy and extended X-ray absorption fine-structure spectroscopy analysis show the nanoparticles are Cu(0), however, atomic resolution images and electron energy loss spectroscopy suggest partial oxidation of the surface layer to Cu<sub>2</sub> O upon exposure to air. The catalytic activity of the Cu-NPs is demonstrated in an archetypal “click chemistry” reaction, generating good yields during azide-alkyne cycloadditions, most likely catalyzed by the Cu(I) surface layer of the nanoparticles. Furthermore, cytochrome deletion mutants suggest a novel metal reduction system is involved in enzymatic Cu(II) reduction and Cu-NP synthesis, which is not dependent on the Mtr pathway commonly used to reduce other high oxidation state metals in this bacterium. This work demonstrates a novel, simple, green biosynthesis method for producing efficient copper nanoparticle catalysts.</p>