Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Accardo, Angelo

  • Google
  • 9
  • 33
  • 260

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Curvature tuning through defect-based 4D printing4citations
  • 2024Bone cell response to additively manufactured 3D micro-architectures with controlled Poisson's ratio13citations
  • 20244D Printing for Biomedical Applications65citations
  • 2023Auxeticity as a Mechanobiological Tool to Create Meta-Biomaterials20citations
  • 2023Micro 3D Printing Elastomeric IP-PDMS Using Two-Photon Polymerisation13citations
  • 2022Two-Photon Polymerization of 2.5D and 3D Microstructures Fostering a Ramified Resting Phenotype in Primary Microglia21citations
  • 2022Engineered cell culture microenvironments for mechanobiology studies of brain neural cells18citations
  • 2020Aerosol Direct Writing and Thermal Tuning of Copper Nanoparticle Patterns as Surface-Enhanced Raman Scattering Sensors22citations
  • 2017Multi-photon Direct Laser Writing and 3D Imaging of Polymeric Freestanding Architectures for Cell Colonization84citations

Places of action

Chart of shared publication
Moosabeiki, Vahid
1 / 3 shared
Ghodrat, Sepideh
1 / 7 shared
Zadpoor, Amir, A.
4 / 38 shared
Van Manen, Teunis
1 / 2 shared
Bico, José
1 / 2 shared
Yarali, Ebrahim
4 / 7 shared
Callens, Sebastien, J. P.
1 / 2 shared
Habibi, Mehdi
1 / 9 shared
Mirzaali, Mohammad, J.
4 / 24 shared
Ghalayaniesfahani, Ava
2 / 2 shared
Klimopoulou, Maria
1 / 4 shared
Fratila-Apachitei, Lidy
1 / 11 shared
Boukany, Pouyan
1 / 1 shared
David, Kristen
1 / 1 shared
Staufer, Urs
2 / 5 shared
Díaz-Payno, Pedro J.
1 / 4 shared
Van Altena, Pieter Frederik Jacobus
1 / 1 shared
Bajramovic, Jeffrey John
1 / 1 shared
Kremers, Gert-Jan
1 / 1 shared
Timmerman, Raissa
1 / 1 shared
Sharaf, Ahmed
1 / 1 shared
Roos, B.
1 / 1 shared
Heine, Vivi
1 / 1 shared
Ransanz, Lucía Castillo
1 / 1 shared
Altena, Pieter F. J. Van
1 / 1 shared
Tichem, Marcel
1 / 3 shared
Aghajani, Saleh
1 / 1 shared
Thibault, Christophe
1 / 2 shared
Vieu, Christophe
1 / 8 shared
Courson, Rémi
1 / 8 shared
Malaquin, Laurent
1 / 8 shared
Blatché, Marie-Charline
1 / 2 shared
Loubinoux, Isabelle
1 / 1 shared
Chart of publication period
2024
2023
2022
2020
2017

Co-Authors (by relevance)

  • Moosabeiki, Vahid
  • Ghodrat, Sepideh
  • Zadpoor, Amir, A.
  • Van Manen, Teunis
  • Bico, José
  • Yarali, Ebrahim
  • Callens, Sebastien, J. P.
  • Habibi, Mehdi
  • Mirzaali, Mohammad, J.
  • Ghalayaniesfahani, Ava
  • Klimopoulou, Maria
  • Fratila-Apachitei, Lidy
  • Boukany, Pouyan
  • David, Kristen
  • Staufer, Urs
  • Díaz-Payno, Pedro J.
  • Van Altena, Pieter Frederik Jacobus
  • Bajramovic, Jeffrey John
  • Kremers, Gert-Jan
  • Timmerman, Raissa
  • Sharaf, Ahmed
  • Roos, B.
  • Heine, Vivi
  • Ransanz, Lucía Castillo
  • Altena, Pieter F. J. Van
  • Tichem, Marcel
  • Aghajani, Saleh
  • Thibault, Christophe
  • Vieu, Christophe
  • Courson, Rémi
  • Malaquin, Laurent
  • Blatché, Marie-Charline
  • Loubinoux, Isabelle
OrganizationsLocationPeople

article

Multi-photon Direct Laser Writing and 3D Imaging of Polymeric Freestanding Architectures for Cell Colonization

  • Thibault, Christophe
  • Vieu, Christophe
  • Courson, Rémi
  • Malaquin, Laurent
  • Blatché, Marie-Charline
  • Accardo, Angelo
  • Loubinoux, Isabelle
Abstract

The realization of 3D architectures for the study of cell growth, proliferation and differentiation is a task of fundamental importance for both technological and biological communities involved in the development of biomimetic cell culture environments. Here we report the combination of 3D freestanding scaffolds realized by multi-photon direct laser writing (DLW), seeded with neuroblastoma cells, and their multi-technique characterization using advanced 3D fluorescence imaging techniques. The high accuracy of the fabrication process (≈ 200 nm) provides a much finer control of the meso-, micro-and nano-scale features compared to other 3D printing technologies based on fused deposition modeling, inkjet printing, selective laser sintering or polyjet technology. Scanning electron microscopy (SEM) provided detailed insights about the morphology of both cells and cellular Complete Manuscript interconnections around the 3D architecture. On the other hand, the nature of the seeding in the inner core of the 3D scaffold, inaccessible by conventional SEM imaging, was unveiled by light sheet fluorescence microscopy and multi-photon confocal imaging which highlighted an optimal cell colonization both around and within the 3D scaffold as well as the formation of long neuritic extensions. The results open appealing scenarios for the use of the developed 3D fabrication/3D imaging protocols in several neuroscientific contexts.

Topics
  • Deposition
  • impedance spectroscopy
  • morphology
  • scanning electron microscopy
  • sintering
  • laser sintering
  • fluorescence microscopy
  • ion chromatography