Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Oppenheimer, Pola Goldberg

  • Google
  • 11
  • 37
  • 261

Royal Academy of Engineering

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2024Conductivity optimisation of graphene oxide-M13 bacteriophage nanocomposites: towards graphene-based gas micronano-sensors1citations
  • 2024Thermonanomechanics of Graphene Oxide-M13 Bacteriophage Nanocomposites -Towards Graphene-based Nanodevices1citations
  • 2022Development of Unconventional Nano‐Metamaterials from Viral Nano‐Building Blocks3citations
  • 2020Nanomechanics of graphene oxide-bacteriophage based self-assembled porous composites8citations
  • 2016Tunable nanopatterning of conductive polymers via electrohydrodynamic lithography47citations
  • 2015Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics.citations
  • 2014Bio-inspired hierarchical polymer fiber-carbon nanotube adhesives75citations
  • 2013Hierarchical orientation of crystallinity by block-copolymer patterning and alignment in an electric field27citations
  • 2011Carbon Nanotubes Alignment via Electrohydrodynamic Patterning of Nanocomposites22citations
  • 2010Rapid Electrohydrodynamic Lithography Using Low-Viscosity Polymers68citations
  • 2008Preparation and Characterization of a Novel Pyrrole-benzophenone Copolymerized Silica Nanocomposite as a Reagent in a Visual Immunologic-agglutination Test9citations

Places of action

Chart of shared publication
Sun, Yiwei
3 / 4 shared
Passaretti, Paolo
4 / 5 shared
Thomas, Jarrod L.
1 / 1 shared
Stokes, Kate
2 / 2 shared
White, Henry
2 / 3 shared
Zhang, Haowei
1 / 1 shared
White, Henry J.
1 / 1 shared
Schofield, Zoe
1 / 2 shared
Rickard, Jonathan James Stanley
2 / 3 shared
Mahajan, Sumeet
1 / 7 shared
Liu, Wei
1 / 20 shared
Humphreys, Colin J.
1 / 8 shared
Dunstan, David J.
1 / 1 shared
Hernández Campo, Ignacio
1 / 4 shared
González Gómez, Jesús Antonio
1 / 5 shared
Rodríguez González, Fernando
1 / 6 shared
Farrer, Ian
1 / 6 shared
Esconjauregui, Santiago
1 / 6 shared
Tornatzky, Hans
1 / 2 shared
Chen, Bingan
2 / 5 shared
Hofmann, Stephan
2 / 46 shared
Zhong, Guofang
1 / 3 shared
Zhang, Can
1 / 1 shared
Robertson, John
2 / 21 shared
Federle, Walter
1 / 1 shared
Rong, Zhuxia
1 / 3 shared
Zhou, Yanmin
1 / 1 shared
Steiner, Ullrich
4 / 42 shared
Thelakkat, Mukundan
1 / 14 shared
Neumann, Katharina
1 / 1 shared
Sommer, Michael
1 / 20 shared
Hüttner, Sven
1 / 7 shared
Kabra, Dinesh
1 / 8 shared
Vignolini, Silvia
1 / 7 shared
Eder, D.
1 / 7 shared
Regev, Oren
1 / 1 shared
Marks, R. S.
1 / 1 shared
Chart of publication period
2024
2022
2020
2016
2015
2014
2013
2011
2010
2008

Co-Authors (by relevance)

  • Sun, Yiwei
  • Passaretti, Paolo
  • Thomas, Jarrod L.
  • Stokes, Kate
  • White, Henry
  • Zhang, Haowei
  • White, Henry J.
  • Schofield, Zoe
  • Rickard, Jonathan James Stanley
  • Mahajan, Sumeet
  • Liu, Wei
  • Humphreys, Colin J.
  • Dunstan, David J.
  • Hernández Campo, Ignacio
  • González Gómez, Jesús Antonio
  • Rodríguez González, Fernando
  • Farrer, Ian
  • Esconjauregui, Santiago
  • Tornatzky, Hans
  • Chen, Bingan
  • Hofmann, Stephan
  • Zhong, Guofang
  • Zhang, Can
  • Robertson, John
  • Federle, Walter
  • Rong, Zhuxia
  • Zhou, Yanmin
  • Steiner, Ullrich
  • Thelakkat, Mukundan
  • Neumann, Katharina
  • Sommer, Michael
  • Hüttner, Sven
  • Kabra, Dinesh
  • Vignolini, Silvia
  • Eder, D.
  • Regev, Oren
  • Marks, R. S.
OrganizationsLocationPeople

article

Rapid Electrohydrodynamic Lithography Using Low-Viscosity Polymers

  • Oppenheimer, Pola Goldberg
  • Steiner, Ullrich
Abstract

This study explores a number of low-viscosity glass-forming polymers for their suitability as high-speed materials in electrohydrodynamic (EHD) lithography. The use of low-viscosity polymer films significantly reduces the pattering time (to below 10 s) compared to earlier approaches, without compromising the high fidelity of the replicated structures. The rapid pace of this process requires a method to monitor the completion of EHD pattern formation. To this end, the leakage current across the device is monitored and the sigmoidal shape of the current curve is correlated with the various stages of EHD pattern formation.

Topics
  • impedance spectroscopy
  • polymer
  • glass
  • glass
  • viscosity
  • forming
  • lithography