People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mølhave, Kristian S.
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Microheater Controlled Crystal Phase Engineering of Nanowires Using In Situ Transmission Electron Microscopycitations
- 2024Microheater Controlled Crystal Phase Engineering of Nanowires Using In Situ Transmission Electron Microscopycitations
- 2024Operando Electron Microscopy and Impedance Analysis of Solid Oxide Electrolysis and Fuel Cellscitations
- 2021Development of high-temperature electrochemical TEM and its application on solid oxide electrolysis cells
- 2021Initiation and Progression of Anisotropic Galvanic Replacement Reactions in a Single Ag Nanowirecitations
- 2020Complex Aerosol Characterization by Scanning Electron Microscopy Coupled with Energy Dispersive X-ray Spectroscopycitations
- 2018Influence of Cetyltrimethylammonium Bromide on Gold Nanocrystal Formation Studied by in Situ Liquid Cell Scanning Transmission Electron Microscopycitations
- 2017Direct bonding of ALD Al2O3 to silicon nitride thin filmscitations
- 2016Controlling nanowire growth through electric field-induced deformation of the catalyst dropletcitations
- 2016In-Situ Transmission Electron Microscopy on Operating Electrochemical Cells
- 2016Effect of Synthesis Parameters on the Structure and Magnetic Properties of Magnetic Manganese Ferrite/Silver Composite Nanoparticles Synthesized by Wet Chemistry Methodcitations
- 2015Feasibility of the development of reference materials for the detection of Ag nanoparticles in food: neat dispersions and spiked chicken meatcitations
- 2011Titanium tungsten coatings for bioelectrochemical applications
- 2010Customizable in situ TEM devices fabricated in freestanding membranes by focused ion beam millingcitations
- 2008Epitaxial Integration of Nanowires in Microsystems by Local Micrometer Scale Vapor Phase Epitaxycitations
- 2003Soldering of Nanotubes onto Microelectrodescitations
- 2003Solid gold nanostructures fabricated by electron beam depositioncitations
- 2001Customizable nanotweezers for manipulation of free-standing nanostructurescitations
Places of action
Organizations | Location | People |
---|
article
Epitaxial Integration of Nanowires in Microsystems by Local Micrometer Scale Vapor Phase Epitaxy
Abstract
Free-standing epitaxially grown nanowires provide a controlled growth system and an optimal interface to the underlying substrate for advanced optical, electrical, and mechanical nanowire device connections. Nanowires can be grown by vapor-phase epitaxy (VPE) methods such as chemical vapor deposition (CVD) or metal organic VPE (MOVPE). However, VPE of semiconducting nanowires is not compatible with several microfabrication processes due to the high synthesis temperatures and issues such as cross-contamination interfering with the intended microsystem or the VPE process. By selectively heating a small microfabricated heater, growth of nanowires can be achieved locally without heating the entire microsystem, thereby reducing the compatibility problems. The first demonstration of epitaxial growth of silicon nanowires by this method is presented and shows that the microsystem can be used for rapid optimization of VPE conditions. The important issue of the cross-contamination of other parts of the microsystem caused by the local growth of nanowires is also investigated by growth of GaN near previously grown silicon nanowires. The design of the cantilever heaters makes it possible to study the grown nanowires with a transmission electron microscope without sample preparation.