Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Waghmare, Ashwini

  • Google
  • 1
  • 8
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Nanoengineering of Lanthanide‐Doped BaGdF<sub>5</sub>‐Graphene Oxide as a Tunable‐Nanocomposite Platform for Biological Applications1citations

Places of action

Chart of shared publication
Ghosh, Pushpal
1 / 3 shared
Nigam, Sandeep
1 / 1 shared
Bhargava, Yogesh
1 / 1 shared
Wani, Ishfaq Abdullah
1 / 1 shared
Konar, Sanjit
1 / 2 shared
Sharma, Rahul Kumar
1 / 3 shared
Kewat, Heera Lal
1 / 1 shared
Chouryal, Yogendra Nath
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Ghosh, Pushpal
  • Nigam, Sandeep
  • Bhargava, Yogesh
  • Wani, Ishfaq Abdullah
  • Konar, Sanjit
  • Sharma, Rahul Kumar
  • Kewat, Heera Lal
  • Chouryal, Yogendra Nath
OrganizationsLocationPeople

article

Nanoengineering of Lanthanide‐Doped BaGdF<sub>5</sub>‐Graphene Oxide as a Tunable‐Nanocomposite Platform for Biological Applications

  • Ghosh, Pushpal
  • Nigam, Sandeep
  • Bhargava, Yogesh
  • Wani, Ishfaq Abdullah
  • Waghmare, Ashwini
  • Konar, Sanjit
  • Sharma, Rahul Kumar
  • Kewat, Heera Lal
  • Chouryal, Yogendra Nath
Abstract

<jats:title>Abstract</jats:title><jats:p>Inorganic nanohosts doped with lanthanide ions are an indispensable tool for multimodal bioimaging and MRI applications due to their distinctive optical, magnetic, and biocompatible properties. Nanocomposites of such nanoprobes with functionalization capabilities could also enable their use in targeted therapy‐based applications. However, the influence of nanocomponents especially their proportion in a nanocomposite in modulating the physio‐chemical and biocompatibility properties of the nanocomposite is still elusive. To address this knowledge gap, we have engineered nanocomposites variants using an environmentally benign one‐step synthesis with ionic liquids. We have synthesized two nanocomposites, differing in the proportion of lanthanide‐doped ternary fluoride nanoparticles (as nanophase material with luminescent and magnetic traits) and graphene oxide (as host matrix phase with tunable functionalization potential for theranostics applications). We found that with increased GO nanomaterial, nanocomposites showed reduced crystallite size and photoluminescence properties without significantly affecting the magnetic traits. Thus, implying nanocomponents ratio has differential effect on the nanocomposite properties. To assess biocompatibility, we have employed sensitive biomarkers such as craniofacial development, cardiac rhythm, and overall survivability of zebrafish larvae. Remarkably, biocompatibility improved when the proportion of the GO was increased within the nanocomposite as compared to when the nanocomponents were assessed individually. Our results also revealed that biocompatibility of nanocomposites also depends on the synergistic interplay between the nanocomponents due to the spatial arrangement of each nanocomponent in the nanocomposites. Overall, our study offers an intriguing avenue for tuning the biocompatibility of such nanocomposites, rendering them as an application‐independent biocompatible‐platform for theranostics applications.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • photoluminescence
  • phase
  • functionalization
  • Lanthanide
  • biocompatibility