Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gayathri, S.

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Self‐Healing Polybutadienes Formed through Sigmatropic Rearrangement and Stratified H‐Bonding for Use in Polymer‐Bonded Explosives1citations

Places of action

Chart of shared publication
Srinivas, Chinthalapalli
1 / 1 shared
Kp, Vijayalakshmi
1 / 1 shared
Sasidharakurup, Reshmi
1 / 1 shared
Bhuvaneswari, S.
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Srinivas, Chinthalapalli
  • Kp, Vijayalakshmi
  • Sasidharakurup, Reshmi
  • Bhuvaneswari, S.
OrganizationsLocationPeople

article

Self‐Healing Polybutadienes Formed through Sigmatropic Rearrangement and Stratified H‐Bonding for Use in Polymer‐Bonded Explosives

  • Srinivas, Chinthalapalli
  • Kp, Vijayalakshmi
  • Sasidharakurup, Reshmi
  • Bhuvaneswari, S.
  • Gayathri, S.
Abstract

<jats:title>Abstract</jats:title><jats:p>The accomplishment of self‐healing polybutadienes (PB) is decisive for multitude of aerospace applications. We here present the first‐time report on a self‐healing PB derived from a blend of allyloxy end functionalized PB elicited through intramolecular thermally activated sigmatropic Claisen rearrangement coupled with stratified hydrogen bonding for use in polymer bonded explosives (PBX). Heteronuclear Single Quantum Correlation (HSQC), Heteronuclear Multiple Bond Coherence (HMBC), Total Correlation Spectroscopy (TOCSY) and Fourier Transform Infrared spectroscopy (FTIR) Spectroscopy were utilized to confirm the mechanistic aspects of the rearrangement for the proposed application. The mechanism of self‐healing is further elucidated using density functional theory (DFT) computations and confirmed through Raman spectroscopy. The biphasic polymer network architecture is disclosed through two glass transitions at −54 °C and 15–25 °C, as confirmed by Dynamic Mechanical Analysis (DMA) and Atomic Force Microscopy (AFM). The polymer exhibited healing efficiency of 85 % suitable for adhesive or coating applications. Self‐healing in bonding formulations of insensitive polymer bonded explosives was also expedited which exhibited a healing efficiency of 49–54 %.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • polymer
  • theory
  • atomic force microscopy
  • glass
  • glass
  • Hydrogen
  • density functional theory
  • Raman spectroscopy
  • Fourier transform infrared spectroscopy
  • dynamic mechanical analysis