Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Saxena, Amit

  • Google
  • 2
  • 7
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Synthesis and Evaluation of Mesoporous Silica Nanoparticle and its Application in Chemical Enhanced oil Recovery12citations
  • 2022IoT Based Smart Sewerage Management System for Moradabad Citycitations

Places of action

Chart of shared publication
Prajapati, Deepak
1 / 1 shared
Pandey, Anurag
1 / 2 shared
Vats, Sushipra
1 / 1 shared
Shinghal, Deepti
1 / 1 shared
Shinghal, Kshitij
1 / 1 shared
Sharma, Amit
1 / 26 shared
Misra, Rajul
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Prajapati, Deepak
  • Pandey, Anurag
  • Vats, Sushipra
  • Shinghal, Deepti
  • Shinghal, Kshitij
  • Sharma, Amit
  • Misra, Rajul
OrganizationsLocationPeople

article

Synthesis and Evaluation of Mesoporous Silica Nanoparticle and its Application in Chemical Enhanced oil Recovery

  • Saxena, Amit
  • Prajapati, Deepak
  • Pandey, Anurag
  • Vats, Sushipra
Abstract

<jats:title>Abstract</jats:title><jats:p>A significant quantity of hydrocarbons remains in the reservoir after production using primary and secondary techniques. Traditional recovery techniques produce about 33 % of the original oil in place. However, the utilization of chemicals such as surfactants and polymers facilitate the additional recovery of one‐third of this oil. Researchers are currently aiming at mixing surfactant and nanoparticles for their potential applications in petroleum industry. In this work, authors claimed to be the first to study usage of synthesized Mesoporous Silica Nanoparticles (MSN) with Sodium Dodecyl Sulphate (SDS) surfactant to understand its applicability in Chemical Enhanced Oil Recovery through evaluation of the surface tension &amp; Interfacial tension, surfactant adsorption, contact angle, and core flooding experiments. Surface tension studies revealed a synergistic interaction between MSN and anionic surfactant molecules. With the introduction of 2500 ppm of anionic surfactant, the surface tension of deionized water reduces to 34.5 mN/m from 72.4 mN/m. The surface tension of the mixture was further lowered by ∼9.8 % with the addition of 300 ppm MSN. The Interfacial Tension results also showed the same trend. When 300 ppm of MSN was introduced, then IFT values decreases from 8.13 mN/m to 3.91 mN/m at 2500 ppm of anionic surfactant. Contact angle measurements after MSN injection went from 77.98° for SDS (2500 ppm) to 73.36°, 66.54°, and 41.95° for 100, 200, and 300 ppm of MSN, respectively. This demonstrates that the shift toward water‐wet behavior increased along with the MSN concentration. Additionally, adding 300 ppm of MSN lowered surfactant adsorption by ∼80 % at a surfactant concentration of 2500 ppm. Up to 72.27 % of the OOIP could be recovered using the chemical slug made of SDS surfactant, polymer, and MSN. The research data suggests that the MSN can increase the effectiveness of the chemical injection approach, which can be used to recover more oil.</jats:p>

Topics
  • nanoparticle
  • surface
  • polymer
  • experiment
  • Sodium
  • surfactant