People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alsaab, Hashem O.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2022Green synthesis of a MnO-GO-Ag nanocomposite using leaf extract of Fagonia arabica and its antioxidant and anti-inflammatory performancecitations
- 2022Thermal degradation study of polymethylmethacrylate with AlI3 nanoadditivecitations
- 2022Thermal Degradation of Poly (Styrene-Co-Methyl Methacrylate) in the Presence of AlI3 Nanoadditivecitations
- 2022Photocatalytic Degradation of Yellow-50 Using Zno/Polyorthoethylaniline Nanocompositescitations
- 2022Facile Synthesis of Catalyst Free Carbon Nanoparticles From the Soot of Natural Oils
- 2022Acrylic Acid-Functionalized Cellulose Diacrylate-Carbon Nanocomposite Thin Filmcitations
- 2022Biogenic plant mediated synthesis of monometallic zinc and bimetallic Copper/Zinc nanoparticles and their dye adsorption and antioxidant studiescitations
- 2022Controlled preparation of grafted starch modified with Ni nanoparticles for biodegradable polymer nanocomposites and its application in food packagingcitations
- 2022Synthesis of Cu-ZnO/Polyacrylic Acid Hydrogel as Visible-Light-Driven Photocatalyst for Organic Pollutant Degradationcitations
- 2022Boosting photocatalytic interaction of sulphur doped reduced graphene oxide-based S@rGO/NiS2 nanocomposite for destruction of pathogens and organic pollutant degradation caused by visible lightcitations
- 2022Well-defined heterointerface over the doped sulfur atoms in NiS@S-rGO nanocomposite improving spatial charge separation with excellent visible-light photocatalytic performancecitations
- 2021Designing a novel visible-light-driven heterostructure Ni–ZnO/S-g-C<sub>3</sub>N<sub>4</sub> photocatalyst for coloured pollutant degradationcitations
Places of action
Organizations | Location | People |
---|
article
Synthesis of Cu-ZnO/Polyacrylic Acid Hydrogel as Visible-Light-Driven Photocatalyst for Organic Pollutant Degradation
Abstract
<p>The present study illustrates the production of Cu-doped ZnO nanocomposite with polyacrylic acid (PAA) microgel for the degradation of a coloured pollutant under sunlight. From 1 to 20 % Cu was doped into ZnO nanostructure (1–20 % Cu doped-ZnO NPs) by the co-precipitation method and applied for photocatalytic dye degradation. The 15CuZnO NPs exhibited the best dye degradation under sunlight. The 15CuZnO NPs were incorporated with PAA microgel through inverse phase polymerization under N<sub>2</sub> gas atmosphere to yield the objective nanocomposite (PAA/CuZnO NC). The yielded composite showed an extreme rise in photocatalytic efficiency and completely mineralized MB in 60 minutes. The prepared composite showed better degradation of methylene blue than Cu-doped ZnO nanoparticles under UV-vis light radiation. The stability of PAA/CuZnO NC for photodegradation of dye was verified by a recycling experiment of the composite.</p>