Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mäkiarvela, Päivi

  • Google
  • 1
  • 8
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Mono‐ and Bimetallic Ni−Co Catalysts in Dry Reforming of Methane26citations

Places of action

Chart of shared publication
Aubakirov, Yermek A.
1 / 3 shared
Zhang, Xuliang
1 / 2 shared
Murzin, Dmitry Yu
1 / 14 shared
Tungatarova, Svetlana
1 / 1 shared
Palonen, Heikki
1 / 5 shared
Baizhumanova, Tolkyn S.
1 / 3 shared
Vajglova, Zuzana
1 / 2 shared
Peurla, Markus
1 / 4 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Aubakirov, Yermek A.
  • Zhang, Xuliang
  • Murzin, Dmitry Yu
  • Tungatarova, Svetlana
  • Palonen, Heikki
  • Baizhumanova, Tolkyn S.
  • Vajglova, Zuzana
  • Peurla, Markus
OrganizationsLocationPeople

article

Mono‐ and Bimetallic Ni−Co Catalysts in Dry Reforming of Methane

  • Mäkiarvela, Päivi
  • Aubakirov, Yermek A.
  • Zhang, Xuliang
  • Murzin, Dmitry Yu
  • Tungatarova, Svetlana
  • Palonen, Heikki
  • Baizhumanova, Tolkyn S.
  • Vajglova, Zuzana
  • Peurla, Markus
Abstract

<jats:title>Abstract</jats:title><jats:p>Several bimetallic Ni−Co catalysts supported on θ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> together with 10 wt % Ni and 10 wt % Co on θ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> were prepared via the incipient wetness method, characterized by X‐ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy, temperature programmed reduction, temperature programmed CO<jats:sub>2</jats:sub> desorption, Fourier Transformed Infrared Spectroscopy (FTIR) with pyridine adsorption‐desorption and tested in dry methane reforming at 700 °C in a fixed bed reactor. According to XRD the metal oxide crystallite sizes decreased from 20 nm for 10 wt % Co/θ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> to 13 nm for 5 wt % Ni‐5 wt % Co/θ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, which also showed formation of a mixed oxide alloy. The unit cell parameters for spinel in the fresh catalyst and fcc metal formed during the reaction followed the Vegard's rule. Although monometallic 10 wt % Co/θ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> exhibited high hydrogen consumption, desorption temperature was also high resulting in a rather low activity of 10 wt % Co/θ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> in comparison to bimetallic 5 wt % Ni‐5 wt % Co/θ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. The latter exhibited the highest initial activity for hydrogen formation due to its relatively small metal particle size. This catalyst suffered, however, from extensive coking. The most stable catalyst was 10 wt % Ni/θ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> for which the hydrogen yield decreased form 56 % to 45 % during 100 h time‐on‐stream. For this catalyst no sintering occurred, opposite to 10 wt % Co/θ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>.</jats:p>

Topics
  • x-ray diffraction
  • Nitrogen
  • Hydrogen
  • transmission electron microscopy
  • sintering
  • infrared spectroscopy