Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pramanik, Nimai Chand

  • Google
  • 1
  • 4
  • 40

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020A hybrid electrochemical energy storage device using sustainable electrode materials40citations

Places of action

Chart of shared publication
Garnweitner, Georg
1 / 13 shared
Mitchell, David R. G.
1 / 6 shared
Minakshi, Manickam
1 / 34 shared
Jean-Fulcrand, Annelise
1 / 4 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Garnweitner, Georg
  • Mitchell, David R. G.
  • Minakshi, Manickam
  • Jean-Fulcrand, Annelise
OrganizationsLocationPeople

article

A hybrid electrochemical energy storage device using sustainable electrode materials

  • Garnweitner, Georg
  • Mitchell, David R. G.
  • Minakshi, Manickam
  • Jean-Fulcrand, Annelise
  • Pramanik, Nimai Chand
Abstract

<p>A new electrochemical energy storage device, comprising a faradaic rechargeable pseudo-capacitor type electrode with a non-faradaic rechargeable capacitor electrode, is successfully developed for potential applications in smart electric grids. Mapping new electrodes possessing both high energy and power densities as well as long cycle life is vital for the sustainable energy management. In this work, we present a new approach to design electrodes, fabricated from sustainable resources by hybridizing calcined eggshell capacitor anode with a mixed binary metal oxide pseudo-capacitor cathode. Calcium carbonate (calcite), obtained from the biowaste-derived eggshell, is an effective electrode material and operates via accumulation of ions on the electrode surface, providing a high discharge capacitance of 100 F/g through a non-faradaic process. The calcite present in eggshells is found to be a valuable renewable resource which can be utilized for energy storage through suitable process design. Otherwise, such potentially useful materials (eggshells) are generally discarded as landfill. The mixed binary metallic oxide (NiO/Co<sub>3</sub>O<sub>4</sub>) showed a typical pseudocapacitive behaviour associated with both charge transfer reactions and electrostatic means provided a high discharge capacitance of 225 F/g. The fabricated prototype hybrid device provides an energy density 35 Wh/Kg at a power density 420 W/Kg. The charge storage characteristics of the hybrid device depend heavily on the current rate employed. The design and fabrication of new sustainable electrode materials provides an understanding of materials and their electrochemical performance in the high-voltage window.</p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • energy density
  • Calcium