People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Garnweitner, Georg
Technische Universität Braunschweig
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Tuning the Properties of Iron Oxide Nanoparticles in Thermal Decomposition Synthesis: A Comparative Study of the Influence of Temperature, Ligand Length and Ligand Concentrationcitations
- 2023Processing of 3-(Trimethoxysilyl)propyl Methacrylate (TMSPM) Functionalized Barium Titanate/Photopolymer Composites: Functionalization and Process Parameter Investigationcitations
- 2023Flexible Freestanding Thin Polyethylene Oxide‐Based Film as Artificial Solid–Electrolyte Interface to Protect Lithium Metal in Lithium–Sulfur Batteriescitations
- 2023Physical-chemical properties and tribological characterization of water-glycerine based metal oxide nanofluidscitations
- 2023Statistical Determination of Atomic-Scale Characteristics of Au Nanocrystals Based on Correlative Multiscale Transmission Electron Microscopycitations
- 2022Flexible Freestanding Thin Polyethylene Oxide‐Based Film as Artificial Solid–Electrolyte Interface to Protect Lithium Metal in Lithium–Sulfur Batteriescitations
- 2022Amorphization and modified release of ibuprofen by post-synthetic and solvent-free loading into tailored silica aerogelscitations
- 2022Enhanced Performance of Laser‐Structured Copper Electrodes Towards Electrocatalytic Hydrogenation of Furfuralcitations
- 2022Top-Down Formulation of Goethite Nanosuspensions for the Production of Transparent, Inorganic Glass Coatingscitations
- 2020A hybrid electrochemical energy storage device using sustainable electrode materialscitations
- 2019Spray-Dried Hierarchical Aggregates of Iron Oxide Nanoparticles and Their Functionalization for Downstream Processing in Biotechnologycitations
- 2018Impact of nanoparticle surface modification on the mechanical properties of polystyrene-based nanocompositescitations
- 2018Process and Formulation Strategies to Improve Adhesion of Nanoparticulate Coatings on Stainless Steelcitations
Places of action
Organizations | Location | People |
---|
article
A hybrid electrochemical energy storage device using sustainable electrode materials
Abstract
<p>A new electrochemical energy storage device, comprising a faradaic rechargeable pseudo-capacitor type electrode with a non-faradaic rechargeable capacitor electrode, is successfully developed for potential applications in smart electric grids. Mapping new electrodes possessing both high energy and power densities as well as long cycle life is vital for the sustainable energy management. In this work, we present a new approach to design electrodes, fabricated from sustainable resources by hybridizing calcined eggshell capacitor anode with a mixed binary metal oxide pseudo-capacitor cathode. Calcium carbonate (calcite), obtained from the biowaste-derived eggshell, is an effective electrode material and operates via accumulation of ions on the electrode surface, providing a high discharge capacitance of 100 F/g through a non-faradaic process. The calcite present in eggshells is found to be a valuable renewable resource which can be utilized for energy storage through suitable process design. Otherwise, such potentially useful materials (eggshells) are generally discarded as landfill. The mixed binary metallic oxide (NiO/Co<sub>3</sub>O<sub>4</sub>) showed a typical pseudocapacitive behaviour associated with both charge transfer reactions and electrostatic means provided a high discharge capacitance of 225 F/g. The fabricated prototype hybrid device provides an energy density 35 Wh/Kg at a power density 420 W/Kg. The charge storage characteristics of the hybrid device depend heavily on the current rate employed. The design and fabrication of new sustainable electrode materials provides an understanding of materials and their electrochemical performance in the high-voltage window.</p>