People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stamboulis, Artemis
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023A Novel Approach for Powder Bed Fusion of Ceramics Using Two Laser Systemscitations
- 2022Processing and interpretation of core‐electron XPS spectra of complex plasma‐treated polyethylene‐based surfaces using a theoretical peak model
- 2021Antimicrobial bioceramics for biomedical applicationscitations
- 2021An Overview of Sputtering Hydroxyapatite for BiomedicalApplicationcitations
- 2019Mechanical testing of antimicrobial biocomposite coating on metallic medical implants as drug delivery systemcitations
- 2017Types of ceramics: Material classcitations
- 2017Types of ceramics : material class
- 2015Nano-hydroxyapatite deposition on titanium using peptide aptamers
- 2015Functionalization of biomedical surfaces by peptide aptamers
- 2014Electrospun Fibres of Polyhydroxybutyrate Synthesized by Ralstonia eutropha from Different Carbon Sourcescitations
- 2014Electrospun Fibres of Polyhydroxybutyrate Synthesized by Ralstonia eutropha from Different Carbon Sourcescitations
- 2014Use of inter-fibril spaces among electrospun fibrils as ion-fixation and nano-crystallization
- 2014Nanoclay addition to a conventional glass ionomer cementscitations
- 2014Electrospun fibres of polyhydroxybutyrate synthesized by ralstonia eutropha from different carbon sourcescitations
- 2014Effect of nanoclay dispersion on the properties of a commercial glass ionomer cementcitations
- 2013Sol-Gel Preparation of Silica-Based Nano-Fibers for Biomédical Applications
- 2013Active screen plasma nitriding enhances cell attachment to polymer surfacescitations
- 2013Nitrogen plasma surface modification enhances cellular compatibility of aluminosilicate glasscitations
- 2012Durability and reliability of medical polymerscitations
- 2011An X-ray micro-fluorescence study to investigate the distribution of Al, Si, P and Ca ions in the surrounding soft tissue after implantation of a calcium phosphate-mullite ceramic composite in a rabbit animal modelcitations
- 2010Effect of active screen plasma nitriding on the biocompatibility of UHMWPE surfaces
- 2008Solid state MAS-NMR and FTIR study of barium containing alumino-silicate glasses
- 2007Real-time nucleation and crystallisation studies of a fluorapatite glass-ceramics using small-angle neutron scattering and neutron diffractioncitations
- 2007Structural characterization of ionomer glasses by multinuclear solid state MAS-NMR spectroscopycitations
- 2006The influence of montmorillonite clay reinforcement on the performance of a glass ionomer restorativecitations
- 2006Real Time Neutron Diffraction Studies of apatite glass ceramicscitations
- 2002Mechanical properties of biodegradable polymer sutures coated with bioactive glasscitations
Places of action
Organizations | Location | People |
---|
article
Processing and interpretation of core‐electron XPS spectra of complex plasma‐treated polyethylene‐based surfaces using a theoretical peak model
Abstract
Interpretation of X-ray photoelectron spectroscopy (XPS) spectra of complex material surfaces, such as those obtained after surface plasma treatment of polymers, is confined by the available references. The limited understanding of the chemical surface composition may impact the ability to determine suitable coupling chemistries used for surface decoration or assess surface-related properties like biocompatibility. In this work, XPS is used to investigate the chemical composition of various ultra-high-molecular-weight polyethylene (UHMWPE) surfaces. UHMWPE doped with α-tocopherol or functionalised by active screen plasma nitriding (ASPN) was investigated as a model system. Subsequently, a more complex combined system obtained by ASPN treatment of α-tocopherol doped UHMWPE was investigated. Through ab initio orbital calculations and by employing Koopmans' theorem, the core-electron binding energies (CEBEs) were evaluated for a substantial number of possible chemical functionalities positioned on PE-based model structures. The calculated ΔCEBEs showed to be in reasonable agreement with experimental reference data. The calculated ΔCEBEs were used to develop a material-specific peak model suitable for the interpretation of merged high-resolution C 1 s, N 1 s and O 1 s XPS spectra of PE-based materials. In contrast to conventional peak fitting, the presented approach allowed the distinction of functionality positioning (i.e. centred or end-chain) and evaluation of the long-range effects of the chemical functionalities on the PE carbon backbone. Altogether, a more detailed interpretation of the modified UHMWPE surfaces was achieved whilst reducing the need for manual input and personal bias introduced by the spectral analyst.