Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Abrahami, Shoshan

  • Google
  • 10
  • 31
  • 513

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Surface engineering of aerospace aluminium alloys3citations
  • 2021Scrutinizing the importance of surface chemistry versus surface roughness for aluminium/sol-gel film adhesion26citations
  • 2020Nanorods grown by copper anodizing in sodium carbonate22citations
  • 2020A Review on Anodizing of Aerospace Aluminum Alloys for Corrosion Protection195citations
  • 2020Effect of surface roughness and chemistry on the adhesion and durability of a steel-epoxy adhesive interface114citations
  • 2018Advanced (In Situ) Surface Analysis of Organic Coating/Metal Oxide Interactions for Corrosion Protection of Passivated Metals5citations
  • 2017Towards Cr(VI)-free anodization of aluminum alloys for aerospace adhesive bonding applications65citations
  • 2017Adhesive bonding and corrosion performance investigated as a function of auminum oide chemistry and adhesives17citations
  • 2016Potentiodynamic anodizing of aluminum alloys in Cr(VI)-free electrolytes18citations
  • 2015XPS Analysis of the Surface Chemistry and Interfacial Bonding of Barrier-Type Cr(VI)-Free Anodic Oxides48citations

Places of action

Chart of shared publication
Kovač, J.
1 / 9 shared
Milošev, I.
1 / 7 shared
Tiringer, U.
2 / 7 shared
Terryn, Herman
10 / 124 shared
Dam, J. P. B. Van
2 / 2 shared
Mol, J. M. C.
3 / 93 shared
Kovac, J.
1 / 9 shared
Milosev, I.
1 / 1 shared
Stepniowski, Wojciech J.
1 / 2 shared
Landskron, Kai
1 / 1 shared
Michalska-Domańska, M. E.
1 / 1 shared
Buijnsters, Josephus G.
1 / 2 shared
Paliwoda, Damian
1 / 3 shared
Misiolek, Wojciech Z.
1 / 3 shared
Mol, Johannes M. C.
2 / 12 shared
Burchardt, Malte
1 / 2 shared
Hack, Theodor
1 / 2 shared
Paz Martínez-Viademonte, Mariana
1 / 1 shared
Yilmaz, A.
1 / 8 shared
Mol, Arjan
2 / 64 shared
Gonzalez-Garcia, Yaiza
1 / 27 shared
Van Dam, Joost
1 / 3 shared
Pletincx, Sven
1 / 12 shared
Mol, Johannes
1 / 6 shared
Hauffman, Tom
2 / 59 shared
Kok, John M. M. De
3 / 4 shared
Hauffman, T.
1 / 2 shared
Elisseeva, O.
1 / 1 shared
Kok, J. M. M. De
1 / 1 shared
Put, M. A. Van
1 / 1 shared
Mol, Johannes M.
1 / 1 shared
Chart of publication period
2024
2021
2020
2018
2017
2016
2015

Co-Authors (by relevance)

  • Kovač, J.
  • Milošev, I.
  • Tiringer, U.
  • Terryn, Herman
  • Dam, J. P. B. Van
  • Mol, J. M. C.
  • Kovac, J.
  • Milosev, I.
  • Stepniowski, Wojciech J.
  • Landskron, Kai
  • Michalska-Domańska, M. E.
  • Buijnsters, Josephus G.
  • Paliwoda, Damian
  • Misiolek, Wojciech Z.
  • Mol, Johannes M. C.
  • Burchardt, Malte
  • Hack, Theodor
  • Paz Martínez-Viademonte, Mariana
  • Yilmaz, A.
  • Mol, Arjan
  • Gonzalez-Garcia, Yaiza
  • Van Dam, Joost
  • Pletincx, Sven
  • Mol, Johannes
  • Hauffman, Tom
  • Kok, John M. M. De
  • Hauffman, T.
  • Elisseeva, O.
  • Kok, J. M. M. De
  • Put, M. A. Van
  • Mol, Johannes M.
OrganizationsLocationPeople

article

Potentiodynamic anodizing of aluminum alloys in Cr(VI)-free electrolytes

  • Abrahami, Shoshan
  • Elisseeva, O.
  • Kok, J. M. M. De
  • Terryn, Herman
  • Put, M. A. Van
  • Mol, J. M. C.
Abstract

The aerospace industry progressively develops alternatives for chromic acid anodizing, because Cr(VI) is known to be toxic and carcinogenic. In this work, potentiodynamic anodizing of AA1050 and AA2024-T3 clad was performed in phosphoric-sulfuric acid (PSA) and sulfuric acid (SAA). All anodizing cycles started with a linear voltage sweep, followed by a constant voltage, or a dynamic voltage. Current density responses were recorded during each anodizing cycle and comprised different stages, which could be related to growth phases of the anodic oxide film. Interesting differences were found between cycles with an intermediate increase in anodizing voltage versus cycles with an intermediate decrease in voltage. Cycles including an increase in voltage resulted in higher anodic oxide formation efficiencies because of a temporary exceedance of the steady state current (recovery period) directly after the voltage step. Also, a sudden decrease in voltage led to distinct border between a fine and coarse region in the film morphology, while a sudden increase in voltage did not. For prolonged anodizing in PSA, coarsening of the upper film part was observed because of the high solubility of Al2O3 in phosphoric acid. Pore walls close to the outer surface did not only get thinner, but completely dissolved in the electrolyte. Consequently, anodic oxide formation efficiencies were higher for SAA than for PSA. Copyright © 2016 John Wiley & Sons, Ltd.

Topics
  • density
  • impedance spectroscopy
  • pore
  • morphology
  • surface
  • phase
  • aluminium
  • current density