People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liu, Yanwen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Multi-Analytical Study of Damage to Marine Ballast Tank Coatings After Cyclic Corrosion Testing
- 2024High resolution analytical microscopy of damage progression within a polyester powder coating after cyclic corrosion testing
- 2021Local oxidation of the buried epoxy-amine/iron oxide interphasecitations
- 2021Local Oxidation of the Buried Epoxy-Amine / Iron Oxide Interphase
- 2020Examining the early stages of thermal oxidative degradation in epoxy-amine resinscitations
- 2019Leaching from coatings pigmented with strontium aluminium polyphosphate inhibitor pigment- evidence for a cluster-percolation modelcitations
- 2019How pigment volume concentration (PVC) and particle connectivity affect leaching of corrosion inhibitive species from coatingscitations
- 2018Multi-Modal Plasma Focused Ion Beam Serial Section Tomography of an Organic Paint Coatingcitations
- 2017Molecularly Controlled Epoxy Network Nanostructurescitations
- 2017Time-lapse lab-based X-ray nano-CT study of corrosion damagecitations
- 2017An organic coating pigmented with strontium aluminium polyphosphate for corrosion protection of zinc alloy coated steelcitations
- 2017An organic coating pigmented with strontium aluminium polyphosphate for corrosion protection of zinc alloy coated steelcitations
- 2017Influence of Volume Concentration of Active Inhibitor on Microstructure and Leaching Behaviour of a Model Primercitations
- 2016Lithium salts as leachable corrosion inhibitors and potential replacement for hexavalent chromium in organic coatings for the protection of aluminum alloyscitations
- 2016Corrosion inhibition of pure aluminium and AA2014-T6 alloy by strontium chromate at low concentrationcitations
- 2016An investigation of the corrosion inhibitive layers generated from lithium oxalatecontaining organic coating on AA2024-T3 aluminium alloycitations
- 2015The corrosion protection of AA2024-T3 aluminium alloy by leaching of lithium-containing salts from organic coatingscitations
- 2015The corrosion protection of AA2024-T3 aluminium alloy by leaching of lithium-containing salts from organic coatingscitations
- 2015Protective Film Formation on AA2024-T3 Aluminum Alloy by Leaching of Lithium Carbonate from an Organic Coating
- 2010Corrosion behaviour of mechanically polished AA7075-T6 aluminium alloycitations
- 2006Morphology, composition and structure of anodic films on binary Al-Cu alloyscitations
- 2002Imaging XPS investigation of the lateral distribution of copper inclusions at the abraded surface of 2024T3 aluminium alloy and adsorption of decyl phosphonic acidcitations
Places of action
Organizations | Location | People |
---|
article
Corrosion inhibition of pure aluminium and AA2014-T6 alloy by strontium chromate at low concentration
Abstract
The influence of a low concentration of strontium chromate on the corrosion inhibition of superpure aluminium and AA2014-T6 aluminium alloy in 0.6 m chloride solution has been investigated to simulate the leaching process of inhibitors from coatings. The potential-time and polarisation behaviour show influences on both the anodic and cathodic kinetics on the superpure aluminium surface. However, predominant cathodic inhibition was observed for the AA2014-T6 aluminium alloy. It was evident that chromium species were reduced at cathodic second phase particles, forming a thin passive film at the cathodic sites, which blocks the oxygen reduction reaction and, consequently, provides effective corrosion inhibition