Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Buchheit, R. G.

  • Google
  • 1
  • 4
  • 43

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013A consistent description of intermetallic particle composition: An analysis of ten batches of AA2024-T343citations

Places of action

Chart of shared publication
Wilson, Nick
1 / 6 shared
Morton, Allan
1 / 2 shared
Moffatt, Andrew
1 / 1 shared
Hughes, Tony
1 / 19 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Wilson, Nick
  • Morton, Allan
  • Moffatt, Andrew
  • Hughes, Tony
OrganizationsLocationPeople

article

A consistent description of intermetallic particle composition: An analysis of ten batches of AA2024-T3

  • Wilson, Nick
  • Morton, Allan
  • Moffatt, Andrew
  • Hughes, Tony
  • Buchheit, R. G.
Abstract

Advances in electron microprobe analyses have made it possible to characterise large areas at very fine pixel size relatively quickly. In a recent study by some of the authors, a 2 × 2 mm2 area of AA2024-T351 was mapped using a step size of approximately 0.4 µm. Both wavelength dispersive intensities as well as energy dispersive spectra were collected at each pixel thus forming a hyperspectral dataset. That study revealed a number of compositions within the AA2024-T351, distributed as either individual particles or compositional domains within particles. In the current study, ten batches of sheet product were examined. Nine batches of relatively new product had a common set of compositions for the different particles types in the different batches, but exhibited variation in the number density of the different types of particles. An older batch, however, had a completely different profile of compositions for the particles. The compositions of intermetallic particles in newer batches did not match what would be considered textbook compositions, raising the possibility that improved processing and purity of new AA2024-T351 might lead to different particle types to those considered to be typical for AA2024-T351 sheet.

Topics
  • density
  • forming
  • intermetallic