Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kolar, Metod

  • Google
  • 1
  • 4
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Etching of polyethylene terephthalate thin films by neutral oxygen atoms in the late flowing afterglow of oxygen plasma42citations

Places of action

Chart of shared publication
Vesel, Alenka
1 / 20 shared
Mozetic, Miran
1 / 9 shared
Doliska, Ales
1 / 4 shared
Stana Kleinschek, Karin
1 / 46 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Vesel, Alenka
  • Mozetic, Miran
  • Doliska, Ales
  • Stana Kleinschek, Karin
OrganizationsLocationPeople

article

Etching of polyethylene terephthalate thin films by neutral oxygen atoms in the late flowing afterglow of oxygen plasma

  • Vesel, Alenka
  • Mozetic, Miran
  • Kolar, Metod
  • Doliska, Ales
  • Stana Kleinschek, Karin
Abstract

<p>Films of polyethylene terephthalate were deposited on quartz crystals and exposed to oxygen atoms to study their etching characteristics and quantify the etching rate. Oxygen (O) atoms were created by passing molecular oxygen through plasma created in a microwave discharge. The discharge power was fixed at 250 W, while the pressure of oxygen was 50 Pa. Before exposure to oxygen atoms, a thin polymer film of polyethylene terephthalate (PET) was deposited uniformly over a crystal with a diameter of 12 mm. The crystal was mounted on a quartz crystal microbalance to accurately determine the thickness of the polymer film. The polymer film was exposed to O atoms in the flowing afterglow. The density of O atoms was measured with a cobalt catalytic probe mounted next to the sample and was determined to be 1.2 × 10<sup>21</sup> m<sup>-3</sup>. Samples were treated with O atoms for different periods of up to 120 min. The thickness of the film decreased linearly with treatment time. After 90 min of treatment, a 65-nm-thick polymer film was completely removed. Therefore, the etching rate was 0.5 nm/min, so the interaction probability between an O atom and an atom in the sample was extremely low, just 1.4 × 10<sup>-6</sup>. Samples treated for different periods were investigated by atomic force microscopy and X-ray photoelectron spectroscopy to examine the etching characteristics of O atoms in the flowing afterglow.</p>

Topics
  • density
  • polymer
  • thin film
  • x-ray photoelectron spectroscopy
  • Oxygen
  • atomic force microscopy
  • etching
  • cobalt