Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Armitage, Emily G.

  • Google
  • 2
  • 6
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2013Time-of-flight SIMS as a novel approach to unlocking the hypoxic properties of cancer9citations
  • 2013ToF-SIMS as a tool for metabolic profiling small biomolecules in cancer systems25citations

Places of action

Chart of shared publication
Kotze, Helen L.
2 / 2 shared
Williams, Kaye
2 / 2 shared
Henderson, Alex
2 / 15 shared
Vickerman, John C.
2 / 18 shared
Lockyer, Nicholas P.
2 / 17 shared
Fletcher, John S.
2 / 14 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Kotze, Helen L.
  • Williams, Kaye
  • Henderson, Alex
  • Vickerman, John C.
  • Lockyer, Nicholas P.
  • Fletcher, John S.
OrganizationsLocationPeople

article

Time-of-flight SIMS as a novel approach to unlocking the hypoxic properties of cancer

  • Kotze, Helen L.
  • Armitage, Emily G.
  • Williams, Kaye
  • Henderson, Alex
  • Vickerman, John C.
  • Lockyer, Nicholas P.
  • Fletcher, John S.
Abstract

It is known that hypoxia-inducible factor 1 (HIF-1) activity results in the coordinated up-regulation of a large number of proteins that facilitate cell survival in tumours; however, the effect of HIF-1 on cancer metabolism is less well characterised. With knowledge of the specific effect of HIF-1 on cancer metabolism, biomarkers could be identified for which new drugs could be targeted. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) offers the potential to analyse intact cells in situ and has a mass spectral coverage that is applicable to metabolic profiling. It has been used to analyse the effects of HIF-1 on multicellular tumour models. Multicellular tumour spheroids (MTSs) have been cultured from human colon carcinoma cells with and without the expression of HIF-1, and the surface of the cross sections of each MTS has been analysed. Because metabolic profiling is an emerging field in ToF-SIMS, there is a requirement to determine which metabolites can be detected using this technique and which of those can be identified in complex mixtures within biological samples. For this, a selection of metabolites have been analysed, and the ToF-SIMS standard spectra acquired have been used to localise metabolites in MTS sections. The comparison of metabolic profiles of MTSs with and without the expression of HIF-1 has elucidated potential biomarkers for tumour survival in hypoxia, some of which may be HIF-1 regulated. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.

Topics
  • impedance spectroscopy
  • surface
  • laser emission spectroscopy
  • spectrometry
  • selective ion monitoring
  • secondary ion mass spectrometry