Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Roedig, Utz

  • Google
  • 1
  • 4
  • 154

University College Cork

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Secure communication for the Internet of Things - a comparison of link-layer security and IPsec for 6LoWPAN154citations

Places of action

Chart of shared publication
Voigt, Thiemo
1 / 2 shared
Raza, Shahid
1 / 2 shared
Duquennoy, Simon
1 / 1 shared
Höglund, Joel
1 / 1 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Voigt, Thiemo
  • Raza, Shahid
  • Duquennoy, Simon
  • Höglund, Joel
OrganizationsLocationPeople

article

Secure communication for the Internet of Things - a comparison of link-layer security and IPsec for 6LoWPAN

  • Voigt, Thiemo
  • Raza, Shahid
  • Duquennoy, Simon
  • Roedig, Utz
  • Höglund, Joel
Abstract

The future Internet is an IPv6 network interconnecting traditional computers and a large number of smart objects. This Internet of Things (IoT) will be the foundation of many services and our daily life will depend on its availability and reliable operation. Therefore, among many other issues, the challenge of implementing secure communication in the IoT must be addressed. In the traditional Internet, IPsec is the established and tested way of securing networks. It is therefore reasonable to explore the option of using IPsec as a security mechanism for the IoT. Smart objects are generally added to the Internet using IPv6 over Low-power Wireless Personal Area Networks (6LoWPAN), which defines IP communication for resource-constrained networks. Thus, to provide security for the IoT based on the trusted and tested IPsec mechanism, it is necessary to define an IPsec extension of 6LoWPAN. In this paper, we present such a 6LoWPAN/IPsec extension and show the viability of this approach. We describe our 6LoWPAN/IPsec implementation, which we evaluate and compare with our implementation of IEEE 802.15.4 link-layer security. We also show that it is possible to reuse crypto hardware within existing IEEE 802.15.4 transceivers for 6LoWPAN/IPsec. The evaluation results show that IPsec is a feasible option for securing the IoT in terms of packet size, energy consumption, memory usage, and processing time. Furthermore, we demonstrate that in contrast to common belief, IPsec scales better than link-layer security as the data size and the number of hops grow, resulting in time and energy savings.

Topics
  • impedance spectroscopy