People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rosa, Luis G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2014Changing molecular band offsets in polymer blends of (P3HT/P(VDF-TrFE)) poly(3-hexylthiophene) and poly(vinylidene fluoride with trifluoroethylene) due to ferroelectric polingcitations
- 2012Nanoscale Fabrication of the Ferroelectric Polymer Poly(vinylidene Fluoride with Trifluoroethylene) P(VDF‐TrFE) 75:25 Thin Films by Atomic Force Microscope Nanolithographycitations
- 2005Crystalline ice grown on the surface of the ferroelectric polymer poly(vinylidene fluoride) (70%) and trifluoroethylene (30%)citations
Places of action
Organizations | Location | People |
---|
article
Nanoscale Fabrication of the Ferroelectric Polymer Poly(vinylidene Fluoride with Trifluoroethylene) P(VDF‐TrFE) 75:25 Thin Films by Atomic Force Microscope Nanolithography
Abstract
<jats:title>Summary</jats:title><jats:p>Thin films of an organic ferroelectric system, poly(vinylidene fluoride with trifluoroethylene) <jats:styled-content style="fixed-case">P</jats:styled-content>(<jats:styled-content style="fixed-case">VDF</jats:styled-content>‐<jats:styled-content style="fixed-case">T</jats:styled-content>r<jats:styled-content style="fixed-case">FE</jats:styled-content>, Kureha Corporation, Tokyo, Japan) 75:25 layers, have been deposited on highly ordered pyrolytic graphite and silicon dioxide by the horizontal <jats:styled-content style="fixed-case">S</jats:styled-content>chaefer method of <jats:styled-content style="fixed-case">L</jats:styled-content>angmuir–<jats:styled-content style="fixed-case">B</jats:styled-content>lodgett techniques. It is possible to “shave” or mechanically displace small regions of the polymer film by using atomic force microscope nanolithography techniques such as nanoshaving, leaving swaths of the surface cut to a depth of 4 nm and 12 nm exposing the substrate. The results of fabricating stripes by nanoshaving two holes close to each other show a limit to the material “stripe” widths of an average of 153.29 nm and 177.67 nm that can be produced. Due to the lack of adhesion between the substrates and the polymer <jats:styled-content style="fixed-case">P</jats:styled-content>(<jats:styled-content style="fixed-case">VDF</jats:styled-content>‐<jats:styled-content style="fixed-case">T</jats:styled-content>r<jats:styled-content style="fixed-case">FE</jats:styled-content>) film, smaller “stripes” of <jats:styled-content style="fixed-case">P</jats:styled-content>(<jats:styled-content style="fixed-case">VDF</jats:styled-content>‐<jats:styled-content style="fixed-case">T</jats:styled-content>r<jats:styled-content style="fixed-case">FE</jats:styled-content>) cannot be produced, and it can be shown by the sequencing of nanoshaved regions that “stripes” of thin films can be removed. SCANNING 34: 404‐409, 2012. © 2012 Wiley Periodicals, Inc.</jats:p>