Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Silva, Robson Da

  • Google
  • 1
  • 5
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Global Room‐Temperature Superconductivity in Graphite8citations

Places of action

Chart of shared publication
Trugenberger, Carlo
1 / 2 shared
Kopelevich, Yakov
1 / 5 shared
Vinokour, Valerii
1 / 1 shared
Torres, José
1 / 1 shared
Diamantini, Maria Cristina
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Trugenberger, Carlo
  • Kopelevich, Yakov
  • Vinokour, Valerii
  • Torres, José
  • Diamantini, Maria Cristina
OrganizationsLocationPeople

article

Global Room‐Temperature Superconductivity in Graphite

  • Trugenberger, Carlo
  • Kopelevich, Yakov
  • Vinokour, Valerii
  • Torres, José
  • Silva, Robson Da
  • Diamantini, Maria Cristina
Abstract

<jats:title>Abstract</jats:title><jats:p>Room temperature superconductivity under normal conditions has been a major challenge of physics and material science since its discovery. Here the global room‐temperature superconductivity observed in cleaved highly oriented pyrolytic graphite carrying dense arrays of nearly parallel surface line defects is reported. The multiterminal measurements performed at the ambient pressure in the temperature interval 4.5 K ≤ <jats:italic>T</jats:italic> ≤ 300 K and at magnetic fields 0 ≤ <jats:italic>B</jats:italic> ≤ 9 T applied perpendicular to the basal graphitic planes reveal that the superconducting critical current <jats:italic>I</jats:italic><jats:sub>c</jats:sub>(<jats:italic>T</jats:italic>, <jats:italic>B</jats:italic>) is governed by the normal state resistance <jats:italic>R</jats:italic><jats:sub>N</jats:sub>(<jats:italic>T</jats:italic>, <jats:italic>B</jats:italic>) so that <jats:italic>I</jats:italic><jats:sub>c</jats:sub>(<jats:italic>T</jats:italic>, <jats:italic>B</jats:italic>) is proportional to 1/<jats:italic>R</jats:italic><jats:sub>N</jats:sub>(<jats:italic>T</jats:italic>, <jats:italic>B</jats:italic>). Magnetization <jats:italic>M</jats:italic>(<jats:italic>T</jats:italic>, <jats:italic>B</jats:italic>) measurements of superconducting screening and hysteresis loops together with the critical current oscillations with temperature that are characteristic for superconductor‐ferromagnet‐superconductor Josephson chains, provide strong support for the occurrence of superconductivity at <jats:italic>T</jats:italic> &gt; 300 K. A theory of global superconductivity emerging in the array of linear structural defects is developed which well describes the experimental findings and demonstrate that global superconductivity arises as a global phase coherence of superconducting granules in linear defects promoted by the stabilizing effect of underlying Bernal graphite via tunneling coupling to the three dimensional (3D) material.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • phase
  • theory
  • defect
  • magnetization
  • superconductivity
  • superconductivity