Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shibata, Taiga

  • Google
  • 1
  • 9
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Enhanced Spin Hall Effect in S‐Implanted Pt30citations

Places of action

Chart of shared publication
Shashank, Utkarsh
1 / 3 shared
Nongjai, Razia
1 / 1 shared
Vas, Joseph Vimal
1 / 8 shared
Duchamp, Martial
1 / 14 shared
Medwal, Rohit
1 / 3 shared
Asokan, Kandasami
1 / 2 shared
Asada, Hironori
1 / 3 shared
Rawat, Rajdeep Singh
1 / 3 shared
Gupta, Surbhi
1 / 3 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Shashank, Utkarsh
  • Nongjai, Razia
  • Vas, Joseph Vimal
  • Duchamp, Martial
  • Medwal, Rohit
  • Asokan, Kandasami
  • Asada, Hironori
  • Rawat, Rajdeep Singh
  • Gupta, Surbhi
OrganizationsLocationPeople

article

Enhanced Spin Hall Effect in S‐Implanted Pt

  • Shashank, Utkarsh
  • Nongjai, Razia
  • Vas, Joseph Vimal
  • Duchamp, Martial
  • Medwal, Rohit
  • Asokan, Kandasami
  • Asada, Hironori
  • Rawat, Rajdeep Singh
  • Shibata, Taiga
  • Gupta, Surbhi
Abstract

<jats:title>Abstract</jats:title><jats:p>High efficiency of charge–spin interconversion in spin Hall materials is a prime necessity to apprehend intriguing functionalities of spin–orbit torque for magnetization switching, auto‐oscillations, and domain wall motion in energy‐efficient and high‐speed spintronic devices. To this end, innovations in fabricating advanced materials that possess not only large charge–spin conversion efficiency but also viable electrical and spin Hall conductivity are of importance. Here, a new spin Hall material designed by implanting low energy 12 keV sulfur ions in heavy metal Pt, named as Pt(S), is reported that demonstrates eight times higher conversion efficiency as compared to pristine Pt. The figure of merit, spin Hall angle (<jats:italic>θ</jats:italic><jats:sub>SH</jats:sub>), up to of 0.502 together with considerable electrical conductivity of 1.65 × 10<jats:sup>6</jats:sup> Ω<jats:sup>–1 </jats:sup>m<jats:sup>–1</jats:sup> is achieved. The spin Hall conductivity increases with increasing , as , implying an intrinsic mechanism in a dirty metal conduction regime. A comparatively largeof 8.32 × 10<jats:sup>5</jats:sup> () Ω<jats:sup>–1 </jats:sup>m<jats:sup>–1</jats:sup> among the reported heavy‐metals‐based alloys can be useful for developing next‐generation spintronic devices using spin–orbit torque.</jats:p>

Topics
  • impedance spectroscopy
  • magnetization
  • electrical conductivity