Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Palacio, Irene

  • Google
  • 18
  • 49
  • 3037

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (18/18 displayed)

  • 2024Electronic Structure Evolution in the Temperature Range of Metal–Insulator Transitions on Sn/Ge(111)citations
  • 2024Electronic Structure Evolution in the Temperature Range of Metal–Insulator Transitions on Sn/Ge(111)citations
  • 2024Transition mechanism of the coverage-dependent polymorphism of self-assembled melamine nanostructures on Au(111)1citations
  • 2023Electron-stimulated desorption kinetics of ultra-thin LiCl films on graphene2citations
  • 2020Production and processing of graphene and related materialscitations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materials421citations
  • 2020Production and processing of graphene and related materialscitations
  • 2019Ultra-thin NaCl films as protective layers for graphene8citations
  • 2018Geometrically defined spin structures in ultrathin Fe3O4 with bulk like magnetic properties25citations
  • 2017Highly selective covalent organic functionalization of epitaxial graphene54citations
  • 2016A New strategy to decouple epitaxial graphene from metals: Potential-controlled electrochemical oxidationcitations
  • 2015Transforming C60 into graphene: growth, structural and electronic characterizationcitations

Places of action

Chart of shared publication
Michel, Enrique G.
1 / 4 shared
Nair, Maya N.
1 / 1 shared
Ohtsubo, Yoshi
1 / 1 shared
Talebibrahimi, Amina
1 / 1 shared
Mascaraque, Arantzazu
3 / 6 shared
Tejeda, Antonio
2 / 18 shared
Michel, Enrique
1 / 1 shared
Taleb-Ibrahimi, Amina
1 / 6 shared
Nair, Maya
1 / 2 shared
Ohtsubo, Yoshiyuki
1 / 2 shared
Zamalloa-Serrano, Jorge Manuel
1 / 1 shared
Gómez-Fernández, José María
1 / 1 shared
Martín-Gago, José A.
7 / 13 shared
Martínez, José I.
5 / 14 shared
López, María Francisca
5 / 21 shared
Sánchez-Sánchez, Carlos
1 / 7 shared
Merino, Pablo
9 / 9 shared
García-Hernández, Mar
1 / 4 shared
Azpeitia-Urkia, Jon
2 / 3 shared
Foerster, Michael
3 / 31 shared
Aballe, Lucía
2 / 12 shared
Bueno, Rebeca A.
9 / 10 shared
Alonso, Concepción
6 / 10 shared
Strupinski, Wlodek
9 / 16 shared
García-Hernández, M.
4 / 17 shared
Méndez, Javier
6 / 12 shared
Munuera, C.
3 / 17 shared
Palomares, F. Javier
2 / 10 shared
Lauwaet, Koen
2 / 7 shared
Vázquez, Luis
1 / 11 shared
González-Herrero, Héctor
1 / 1 shared
Martãn Garcãa, Laura
1 / 3 shared
Quesada, Adrian
1 / 7 shared
Aballe, Lucãa
1 / 10 shared
Figuera, Juan De La
1 / 7 shared
Prieto Recio, Pilar
1 / 3 shared
Ruiz-Gãmez, Sandra
1 / 3 shared
Pãrez, Lucas
1 / 4 shared
Mompean, F. J.
2 / 11 shared
Ruiz Del Árbol, Nerea
2 / 2 shared
Thakur, Sangeeta
1 / 9 shared
Luccas, Roberto F.
1 / 1 shared
Baranowski, Jacek M.
1 / 1 shared
Otero, Gonzalo
2 / 3 shared
Salavagione, Horacio J.
1 / 2 shared
López-Elvira, Elena
1 / 1 shared
Ellis, Gary James
1 / 5 shared
Muñoz-Ochando, Isabel
1 / 1 shared
Gutiérrez, A.
1 / 18 shared
Chart of publication period
2024
2023
2020
2019
2018
2017
2016
2015

Co-Authors (by relevance)

  • Michel, Enrique G.
  • Nair, Maya N.
  • Ohtsubo, Yoshi
  • Talebibrahimi, Amina
  • Mascaraque, Arantzazu
  • Tejeda, Antonio
  • Michel, Enrique
  • Taleb-Ibrahimi, Amina
  • Nair, Maya
  • Ohtsubo, Yoshiyuki
  • Zamalloa-Serrano, Jorge Manuel
  • Gómez-Fernández, José María
  • Martín-Gago, José A.
  • Martínez, José I.
  • López, María Francisca
  • Sánchez-Sánchez, Carlos
  • Merino, Pablo
  • García-Hernández, Mar
  • Azpeitia-Urkia, Jon
  • Foerster, Michael
  • Aballe, Lucía
  • Bueno, Rebeca A.
  • Alonso, Concepción
  • Strupinski, Wlodek
  • García-Hernández, M.
  • Méndez, Javier
  • Munuera, C.
  • Palomares, F. Javier
  • Lauwaet, Koen
  • Vázquez, Luis
  • González-Herrero, Héctor
  • Martãn Garcãa, Laura
  • Quesada, Adrian
  • Aballe, Lucãa
  • Figuera, Juan De La
  • Prieto Recio, Pilar
  • Ruiz-Gãmez, Sandra
  • Pãrez, Lucas
  • Mompean, F. J.
  • Ruiz Del Árbol, Nerea
  • Thakur, Sangeeta
  • Luccas, Roberto F.
  • Baranowski, Jacek M.
  • Otero, Gonzalo
  • Salavagione, Horacio J.
  • López-Elvira, Elena
  • Ellis, Gary James
  • Muñoz-Ochando, Isabel
  • Gutiérrez, A.
OrganizationsLocationPeople

article

Electronic Structure Evolution in the Temperature Range of Metal–Insulator Transitions on Sn/Ge(111)

  • Michel, Enrique G.
  • Nair, Maya N.
  • Ohtsubo, Yoshi
  • Talebibrahimi, Amina
  • Palacio, Irene
  • Mascaraque, Arantzazu
  • Tejeda, Antonio
Abstract

<jats:p>One‐third of monolayer of Sn adatoms on a Ge(111) substrate forms a 2D triangular lattice with one unpaired electron per site. The system presents a metal–insulator transition when decreasing the temperature and it is known to exhibit strong electron–phonon coupling at 120–150 K. Herein, a study of the electronic band structure for α‐Sn/Ge(111) between 150 and 5 K is reported. Both the experimental Fermi surfaces and the energy dispersions along high symmetry directions as a function of the temperature are presented. At 5 K it is observed a weakly or low‐dispersing spectral feature, exhibiting an extended gap in the reciprocal space. This feature is derived from the topmost occupied band, which is metallic at high temperature and which develops a kink associated with the strong electron–phonon coupling. The spectral evolution is partially explained with an increase of the electron–phonon coupling when decreasing the temperature. The increase of the electron–phonon coupling at low temperatures gives light into the new physics of this 2D system. The bandwidth is progressively reduced when reducing the temperature, enhancing the electronic correlation effects, and triggering the Mott transition.</jats:p>

Topics
  • impedance spectroscopy
  • dispersion
  • surface
  • band structure