Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ohtsubo, Yoshi

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Electronic Structure Evolution in the Temperature Range of Metal–Insulator Transitions on Sn/Ge(111)citations

Places of action

Chart of shared publication
Michel, Enrique G.
1 / 4 shared
Nair, Maya N.
1 / 1 shared
Talebibrahimi, Amina
1 / 1 shared
Palacio, Irene
1 / 18 shared
Mascaraque, Arantzazu
1 / 6 shared
Tejeda, Antonio
1 / 18 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Michel, Enrique G.
  • Nair, Maya N.
  • Talebibrahimi, Amina
  • Palacio, Irene
  • Mascaraque, Arantzazu
  • Tejeda, Antonio
OrganizationsLocationPeople

article

Electronic Structure Evolution in the Temperature Range of Metal–Insulator Transitions on Sn/Ge(111)

  • Michel, Enrique G.
  • Nair, Maya N.
  • Ohtsubo, Yoshi
  • Talebibrahimi, Amina
  • Palacio, Irene
  • Mascaraque, Arantzazu
  • Tejeda, Antonio
Abstract

<jats:p>One‐third of monolayer of Sn adatoms on a Ge(111) substrate forms a 2D triangular lattice with one unpaired electron per site. The system presents a metal–insulator transition when decreasing the temperature and it is known to exhibit strong electron–phonon coupling at 120–150 K. Herein, a study of the electronic band structure for α‐Sn/Ge(111) between 150 and 5 K is reported. Both the experimental Fermi surfaces and the energy dispersions along high symmetry directions as a function of the temperature are presented. At 5 K it is observed a weakly or low‐dispersing spectral feature, exhibiting an extended gap in the reciprocal space. This feature is derived from the topmost occupied band, which is metallic at high temperature and which develops a kink associated with the strong electron–phonon coupling. The spectral evolution is partially explained with an increase of the electron–phonon coupling when decreasing the temperature. The increase of the electron–phonon coupling at low temperatures gives light into the new physics of this 2D system. The bandwidth is progressively reduced when reducing the temperature, enhancing the electronic correlation effects, and triggering the Mott transition.</jats:p>

Topics
  • impedance spectroscopy
  • dispersion
  • surface
  • band structure