Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Manganelli, Costanza Lucia

  • Google
  • 5
  • 29
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Full Picture of Lattice Deformation in a Ge<sub>1 − x</sub>Sn<sub>x</sub> Micro‐Disk by 5D X‐ray Diffraction Microscopy3citations
  • 2024The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdisks3citations
  • 2024The Lattice Strain Distribution in GexSn1-x Micro-Disks Investigated at the Sub 100-nm Scalecitations
  • 2023The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge<sub>1−<i>x</i></sub>Sn<sub><i>x</i></sub> Microdisks3citations
  • 2022Tailoring photoluminescence by strain-engineering in layered perovskite flakes17citations

Places of action

Chart of shared publication
Zatterin, Edoardo
4 / 7 shared
Montalenti, Francesco
2 / 20 shared
Capellini, Giovanni
2 / 26 shared
Marzegalli, Anna
2 / 21 shared
Sfuncia, Gianfranco
1 / 8 shared
Rovaris, Fabrizio
2 / 7 shared
Corley-Wiciak, Cedric
4 / 10 shared
Von Den Driesch, Nils
2 / 8 shared
Spirito, Davide
5 / 23 shared
Corley-Wiciak, Agnieszka Anna
4 / 6 shared
Richter, Carsten
4 / 17 shared
Zaitsev, Ignatii
3 / 4 shared
Schulli, Tobias
2 / 5 shared
Buca, Dan
2 / 14 shared
Nicotra, Giuseppe
2 / 14 shared
Zöllner, Marvin
1 / 1 shared
Virgilio, Michele
2 / 9 shared
Martin-Garcia, Beatriz
1 / 3 shared
Zoellner, Marvin Hartwig
2 / 2 shared
Sfruncia, Gianfranco
1 / 1 shared
Zaitsev, Ignati
1 / 1 shared
Zollner, Marvin Hartwig
1 / 1 shared
Martín-García, Beatriz
2 / 11 shared
Hueso, Luis E.
1 / 14 shared
Calavalle, Francesco
1 / 1 shared
Casanova, Félix
1 / 5 shared
Barra-Burillo, María
1 / 1 shared
Gobbi, Marco
1 / 11 shared
Hillenbrand, Rainer
1 / 9 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Zatterin, Edoardo
  • Montalenti, Francesco
  • Capellini, Giovanni
  • Marzegalli, Anna
  • Sfuncia, Gianfranco
  • Rovaris, Fabrizio
  • Corley-Wiciak, Cedric
  • Von Den Driesch, Nils
  • Spirito, Davide
  • Corley-Wiciak, Agnieszka Anna
  • Richter, Carsten
  • Zaitsev, Ignatii
  • Schulli, Tobias
  • Buca, Dan
  • Nicotra, Giuseppe
  • Zöllner, Marvin
  • Virgilio, Michele
  • Martin-Garcia, Beatriz
  • Zoellner, Marvin Hartwig
  • Sfruncia, Gianfranco
  • Zaitsev, Ignati
  • Zollner, Marvin Hartwig
  • Martín-García, Beatriz
  • Hueso, Luis E.
  • Calavalle, Francesco
  • Casanova, Félix
  • Barra-Burillo, María
  • Gobbi, Marco
  • Hillenbrand, Rainer
OrganizationsLocationPeople

article

The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge<sub>1−<i>x</i></sub>Sn<sub><i>x</i></sub> Microdisks

  • Manganelli, Costanza Lucia
  • Zatterin, Edoardo
  • Martín-García, Beatriz
  • Virgilio, Michele
  • Spirito, Davide
  • Corley-Wiciak, Agnieszka Anna
  • Richter, Carsten
  • Corley-Wiciak, Cedric
  • Zaitsev, Ignatii
  • Zoellner, Marvin Hartwig
Abstract

<jats:p>Germanium–tin (GeSn) microdisks are promising structures for complementary metal–oxide–semiconductor‐compatible lasing. Their emission properties depend on Sn concentration, strain, and operating temperature. Critically, the band structure of the alloy varies along the disk due to different lattice deformations associated with mechanical constraints. An experimental and numerical study of Ge<jats:sub>1−<jats:italic>x</jats:italic> </jats:sub>Sn<jats:sub> <jats:italic>x</jats:italic> </jats:sub> microdisk with Sn concentration between 8.5 and 14 at% is reported. Combining finite element method calculations, micro‐Raman and X‐ray diffraction spectroscopy enables a comprehensive understanding of mechanical deformation, where computational predictions are experimentally validated, leading to a robust model and insight into the strain landscape. Through micro‐photoluminescence experiments, the temperature dependence of the bandgap of Ge<jats:sub>1−<jats:italic>x</jats:italic> </jats:sub>Sn<jats:sub> <jats:italic>x</jats:italic> </jats:sub> is parametrized using the Varshni formula with respect to strain and Sn content. These results are the input for spatially dependent band structure calculations based on deformation potential theory. It is observed that Sn content and temperature have comparable effects on the bandgap, yielding a decrease of more than 20 meV for an increase of 1 at% or 100 K, respectively. The impact of the strain gradient is also analyzed. These findings correlate structural properties to emission wavelength and spectral width of microdisk lasers, thus demonstrating the importance of material‐related consideration on the design of optoelectronic microstructures.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • photoluminescence
  • theory
  • experiment
  • semiconductor
  • tin
  • band structure
  • Germanium