People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Manganelli, Costanza Lucia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Full Picture of Lattice Deformation in a Ge<sub>1 − x</sub>Sn<sub>x</sub> Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdiskscitations
- 2024The Lattice Strain Distribution in GexSn1-x Micro-Disks Investigated at the Sub 100-nm Scale
- 2023The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge<sub>1−<i>x</i></sub>Sn<sub><i>x</i></sub> Microdiskscitations
- 2022Tailoring photoluminescence by strain-engineering in layered perovskite flakescitations
Places of action
Organizations | Location | People |
---|
article
The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge<sub>1−<i>x</i></sub>Sn<sub><i>x</i></sub> Microdisks
Abstract
<jats:p>Germanium–tin (GeSn) microdisks are promising structures for complementary metal–oxide–semiconductor‐compatible lasing. Their emission properties depend on Sn concentration, strain, and operating temperature. Critically, the band structure of the alloy varies along the disk due to different lattice deformations associated with mechanical constraints. An experimental and numerical study of Ge<jats:sub>1−<jats:italic>x</jats:italic> </jats:sub>Sn<jats:sub> <jats:italic>x</jats:italic> </jats:sub> microdisk with Sn concentration between 8.5 and 14 at% is reported. Combining finite element method calculations, micro‐Raman and X‐ray diffraction spectroscopy enables a comprehensive understanding of mechanical deformation, where computational predictions are experimentally validated, leading to a robust model and insight into the strain landscape. Through micro‐photoluminescence experiments, the temperature dependence of the bandgap of Ge<jats:sub>1−<jats:italic>x</jats:italic> </jats:sub>Sn<jats:sub> <jats:italic>x</jats:italic> </jats:sub> is parametrized using the Varshni formula with respect to strain and Sn content. These results are the input for spatially dependent band structure calculations based on deformation potential theory. It is observed that Sn content and temperature have comparable effects on the bandgap, yielding a decrease of more than 20 meV for an increase of 1 at% or 100 K, respectively. The impact of the strain gradient is also analyzed. These findings correlate structural properties to emission wavelength and spectral width of microdisk lasers, thus demonstrating the importance of material‐related consideration on the design of optoelectronic microstructures.</jats:p>