Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Truccato, Marco

  • Google
  • 8
  • 34
  • 44

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Improving the control of the electroforming process in oxide-based memristive devices by X-ray nanopatterning2citations
  • 2023Structure and physicochemical properties of MgB2 nanosheets obtained via sonochemical liquid phase exfoliation2citations
  • 2021Functional Modifications Induced via X‐ray Nanopatterning in TiO 2 Rutile Single Crystals4citations
  • 2021Functional Modifications Induced via X‐ray Nanopatterning in TiO<sub>2</sub> Rutile Single Crystals4citations
  • 2020Time and space resolved modelling of the heating induced by synchrotron X-ray nanobeams9citations
  • 2019Tailoring the Local Conductivity of TiO2 by X‐Ray Nanobeam Irradiation11citations
  • 2014X-ray structures of single crystal high-Tc superconductors (HTSC) modulated by chemical substitutionscitations
  • 2012Bi-2212 and Y123 highly curved single-crystal-like objects: whiskers, bows and ring-like structures12citations

Places of action

Chart of shared publication
Picollo, Federico
4 / 8 shared
Vlaicu, Aurel-Mihai
1 / 1 shared
Mercioniu, Ionel
1 / 2 shared
Alessio, Andrea
4 / 4 shared
Goß, Kalle
1 / 2 shared
Dittmann, Regina
3 / 40 shared
Brescia, Rosaria
1 / 11 shared
Fretto, Matteo
2 / 5 shared
Bonino, Valentina
5 / 5 shared
Kuncser, Andrei
1 / 3 shared
Mino, Lorenzo
5 / 6 shared
Badica, Petre
2 / 9 shared
Liu, Xiaolin
1 / 1 shared
Valsania, Maria Carmen
1 / 1 shared
Pastero, Linda
2 / 6 shared
Andreo, Luca
1 / 2 shared
Cravotto, Giancarlo
1 / 5 shared
Giordana, Alessia
1 / 7 shared
Wu, Zhilin
1 / 1 shared
Padhi, S. K.
1 / 1 shared
Agostino, Angelo
4 / 5 shared
Martinez-Criado, Gema
2 / 3 shared
Torsello, Daniele
3 / 15 shared
Heisig, Thomas
2 / 5 shared
Prestipino, Carmelo
1 / 18 shared
Pascale, Lise
1 / 1 shared
Pagliero, A.
1 / 1 shared
Costa, U.
1 / 1 shared
Operti, Lorenza
1 / 6 shared
Khan, Mohammad Mizanur Rahman
1 / 1 shared
Hayasaka, Yuichiro
1 / 3 shared
Jakob, Gerhard
1 / 30 shared
Plapcianu, Carmen
1 / 1 shared
Cagliero, Stefano
1 / 1 shared
Chart of publication period
2024
2023
2021
2020
2019
2014
2012

Co-Authors (by relevance)

  • Picollo, Federico
  • Vlaicu, Aurel-Mihai
  • Mercioniu, Ionel
  • Alessio, Andrea
  • Goß, Kalle
  • Dittmann, Regina
  • Brescia, Rosaria
  • Fretto, Matteo
  • Bonino, Valentina
  • Kuncser, Andrei
  • Mino, Lorenzo
  • Badica, Petre
  • Liu, Xiaolin
  • Valsania, Maria Carmen
  • Pastero, Linda
  • Andreo, Luca
  • Cravotto, Giancarlo
  • Giordana, Alessia
  • Wu, Zhilin
  • Padhi, S. K.
  • Agostino, Angelo
  • Martinez-Criado, Gema
  • Torsello, Daniele
  • Heisig, Thomas
  • Prestipino, Carmelo
  • Pascale, Lise
  • Pagliero, A.
  • Costa, U.
  • Operti, Lorenza
  • Khan, Mohammad Mizanur Rahman
  • Hayasaka, Yuichiro
  • Jakob, Gerhard
  • Plapcianu, Carmen
  • Cagliero, Stefano
OrganizationsLocationPeople

article

Functional Modifications Induced via X‐ray Nanopatterning in TiO<sub>2</sub> Rutile Single Crystals

  • Alessio, Andrea
  • Dittmann, Regina
  • Picollo, Federico
  • Martinez-Criado, Gema
  • Truccato, Marco
  • Bonino, Valentina
  • Torsello, Daniele
  • Heisig, Thomas
  • Mino, Lorenzo
Abstract

<jats:sec><jats:label /><jats:p>The possibility to directly write electrically conducting channels in a desired position in rutile TiO<jats:sub>2</jats:sub> devices equipped with asymmetric electrodes—like in memristive devices—by means of the X‐ray nanopatterning (XNP) technique (i.e., intense, localized irradiation exploiting an X‐ray nanobeam) is investigated. Device characterization is carried out by means of a multitechnique approach involving X‐ray fluorescence (XRF), X‐ray excited optical luminescence (XEOL), electrical transport, and atomic force microscopy (AFM) techniques. It is shown that the device conductivity increases and the rectifying effect of the Pt/TiO<jats:sub>2</jats:sub> Schottky barrier decreases after irradiation with doses of the order of 10<jats:sup>11</jats:sup> Gy and fluences of the order of 10<jats:sup>12</jats:sup> J m<jats:sup>−2</jats:sup>. Irradiated regions also show the ability to pin and guide the electroforming process between the electrodes. Indications are that XNP should be able to promote the local formation of oxygen vacancies. This effect could lead to a more deterministic implementation of electroforming, being of interest for production of memristive devices.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • single crystal
  • Oxygen
  • atomic force microscopy
  • size-exclusion chromatography
  • X-ray fluorescence spectroscopy
  • luminescence