Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Heisig, Thomas

  • Google
  • 5
  • 29
  • 115

Forschungszentrum Jülich

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2021Functional Modifications Induced via X‐ray Nanopatterning in TiO 2 Rutile Single Crystals4citations
  • 2021Functional Modifications Induced via X‐ray Nanopatterning in TiO<sub>2</sub> Rutile Single Crystals4citations
  • 2020Antiphase Boundaries Constitute Fast Cation Diffusion Paths in SrTiO3 Memristive Devicescitations
  • 2020Antiphase Boundaries Constitute Fast Cation Diffusion Paths in SrTiO3 Memristive Devices25citations
  • 2019Topotactic Phase Transition Driving Memristive Behavior82citations

Places of action

Chart of shared publication
Alessio, Andrea
2 / 4 shared
Dittmann, Regina
5 / 40 shared
Picollo, Federico
2 / 8 shared
Martinez-Criado, Gema
2 / 3 shared
Truccato, Marco
2 / 8 shared
Bonino, Valentina
2 / 5 shared
Torsello, Daniele
2 / 15 shared
Mino, Lorenzo
2 / 6 shared
Glöß, Maria
2 / 3 shared
Kler, Joe
2 / 4 shared
De Souza, Roger A.
1 / 11 shared
Locatelli, Andrea
2 / 12 shared
Baeumer, Christoph
1 / 8 shared
Moors, Marco
2 / 10 shared
Menteş, Tevfik Onur
2 / 5 shared
Du, Hongchu
2 / 8 shared
Genuzio, Francesca
2 / 3 shared
Hensling, Felix
2 / 4 shared
Mayer, Joachim
2 / 30 shared
Souza, Roger A. De
1 / 5 shared
Bäumer, Christoph
2 / 30 shared
Zamborlini, Giovanni
1 / 9 shared
Waser, Rainer
1 / 29 shared
Jung, Chang Uk
1 / 3 shared
Schneider, Claus M.
1 / 20 shared
Jugovac, Matteo
1 / 15 shared
Feyer, Vitaliy
1 / 20 shared
Nallagatla, Venkata R.
1 / 1 shared
Kim, Miyoung
1 / 3 shared
Chart of publication period
2021
2020
2019

Co-Authors (by relevance)

  • Alessio, Andrea
  • Dittmann, Regina
  • Picollo, Federico
  • Martinez-Criado, Gema
  • Truccato, Marco
  • Bonino, Valentina
  • Torsello, Daniele
  • Mino, Lorenzo
  • Glöß, Maria
  • Kler, Joe
  • De Souza, Roger A.
  • Locatelli, Andrea
  • Baeumer, Christoph
  • Moors, Marco
  • Menteş, Tevfik Onur
  • Du, Hongchu
  • Genuzio, Francesca
  • Hensling, Felix
  • Mayer, Joachim
  • Souza, Roger A. De
  • Bäumer, Christoph
  • Zamborlini, Giovanni
  • Waser, Rainer
  • Jung, Chang Uk
  • Schneider, Claus M.
  • Jugovac, Matteo
  • Feyer, Vitaliy
  • Nallagatla, Venkata R.
  • Kim, Miyoung
OrganizationsLocationPeople

article

Functional Modifications Induced via X‐ray Nanopatterning in TiO<sub>2</sub> Rutile Single Crystals

  • Alessio, Andrea
  • Dittmann, Regina
  • Picollo, Federico
  • Martinez-Criado, Gema
  • Truccato, Marco
  • Bonino, Valentina
  • Torsello, Daniele
  • Heisig, Thomas
  • Mino, Lorenzo
Abstract

<jats:sec><jats:label /><jats:p>The possibility to directly write electrically conducting channels in a desired position in rutile TiO<jats:sub>2</jats:sub> devices equipped with asymmetric electrodes—like in memristive devices—by means of the X‐ray nanopatterning (XNP) technique (i.e., intense, localized irradiation exploiting an X‐ray nanobeam) is investigated. Device characterization is carried out by means of a multitechnique approach involving X‐ray fluorescence (XRF), X‐ray excited optical luminescence (XEOL), electrical transport, and atomic force microscopy (AFM) techniques. It is shown that the device conductivity increases and the rectifying effect of the Pt/TiO<jats:sub>2</jats:sub> Schottky barrier decreases after irradiation with doses of the order of 10<jats:sup>11</jats:sup> Gy and fluences of the order of 10<jats:sup>12</jats:sup> J m<jats:sup>−2</jats:sup>. Irradiated regions also show the ability to pin and guide the electroforming process between the electrodes. Indications are that XNP should be able to promote the local formation of oxygen vacancies. This effect could lead to a more deterministic implementation of electroforming, being of interest for production of memristive devices.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • single crystal
  • Oxygen
  • atomic force microscopy
  • size-exclusion chromatography
  • X-ray fluorescence spectroscopy
  • luminescence