People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lysevych, Mykhaylo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Core-shell GaN/AlGaN nanowires grown by selective area epitaxycitations
- 2022Nonpolar Al xGa1−xN/Al yGa1−yN multiple quantum wells on GaN nanowire for UV emissioncitations
- 2022Far-Field Polarization Engineering from Nonlinear Nanoresonatorscitations
- 2022Selective Area Growth of GaN Nanowirecitations
- 2021Narrow-Bandgap InGaAsP Solar Cell with TiO2 Carrier-Selective Contactcitations
- 2020Forward and Backward Switching of Nonlinear Unidirectional Emission from GaAs Nanoantennascitations
- 2019Second-harmonic generation in (111) gallium arsenide nanoantennas
- 2019 Ultrathin Ta 2 O 5 electron-selective contacts for high efficiency InP solar cells citations
- 2019InGaAsP as a Promising Narrow Band Gap Semiconductor for Photoelectrochemical Water Splittingcitations
- 2019Ultrathin Ta2O5 electron-selective contacts for high efficiency InP solar cellscitations
- 2018Indium phosphide based solar cell using ultra-thin ZnO as an electron selective layercitations
- 2017Improved photoelectrochemical performance of GaN nanopillar photoanodescitations
- 2017Void evolution and porosity under arsenic ion irradiation in GaAs1-xSbx alloyscitations
Places of action
Organizations | Location | People |
---|
article
Narrow-Bandgap InGaAsP Solar Cell with TiO2 Carrier-Selective Contact
Abstract
<p>Carrier-selective contacts offer promising opportunities for solar cells. By alleviating the need for p–n junctions and acting as passivation layers, they significantly simplify the device design and fabrication. Herein, this strategy is applied to a narrow-bandgap (≈0.91 eV) InGaAsP solar cell. Such a solar cell, lattice-matched to InP, possesses a bandgap ideal for the bottom subcell of a tandem cell. It is shown that TiO<sub>2</sub> forms an electron-selective contact to InGaAsP. The TiO<sub>2</sub>/InGaAsP solar cell exhibits a short-circuit current density of 35.2 mA cm<sup>−2</sup>, an open-circuit voltage of 0.49 V, and an efficiency of 8.9%. The cell J–V characteristics and quantum efficiency highlight the beneficial aspect of TiO<sub>2</sub> as a passivating layer for InGaAsP. The reduced open-circuit voltage and lower response at longer wavelengths, on the other hand, indicate that the quaternary alloy material quality could be further improved to increase the carrier diffusion length. Nevertheless, the performance of this simplified electron-selective contact solar cell structure is comparable to conventional p–n junction 1 eV InGaAsP solar cells reported in the literature, highlighting the promise toward lower-cost photovoltaic tandem cells.</p>