Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Choudhary, Nitin

  • Google
  • 1
  • 3
  • 43

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021A Segmented‐Target Sputtering Process for Growth of Sub‐50 nm Ferroelectric Scandium–Aluminum–Nitride Films with Composition and Stress Tuning43citations

Places of action

Chart of shared publication
Hakim, Faysal
1 / 1 shared
Forgey, Christian
1 / 1 shared
Li, Chao
1 / 7 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Hakim, Faysal
  • Forgey, Christian
  • Li, Chao
OrganizationsLocationPeople

article

A Segmented‐Target Sputtering Process for Growth of Sub‐50 nm Ferroelectric Scandium–Aluminum–Nitride Films with Composition and Stress Tuning

  • Choudhary, Nitin
  • Hakim, Faysal
  • Forgey, Christian
  • Li, Chao
Abstract

<jats:sec><jats:label /><jats:p>Harnessing the recently discovered ferroelectricity in scandium aluminum nitride (Sc<jats:sub><jats:italic>x</jats:italic></jats:sub>Al<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>N) for the realization of integrated electronic and electromechanical devices requires a low‐temperature growth process that enables versatile control over film thickness, stoichiometric composition, and stress. Herein, a reactive magnetron sputtering process that enables extreme scaling of film thickness and tuning of composition and residual stress is reported on. Highly crystalline Sc<jats:sub><jats:italic>x</jats:italic></jats:sub>Al<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>N films with thicknesses of over 25–250 nm with scandium concentrations of over 22–30 at% are sputtered using a segmented target created from scandium and aluminum tiles. The residual stress in the films is widely tuned from highly compressive to tensile using a pressure‐ and gas‐flow‐independent approach based on adjusting the electrical termination of the targets. The crystallinity, texture, and ferroelectric characteristics are measured for Sc<jats:sub><jats:italic>x</jats:italic></jats:sub>Al<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>N films with different thicknesses, compositions, and residual stresses. The results highlight the consistent crystallinity and ferroelectric properties despite extreme thickness miniaturization to sub‐50 nm, and the large dependence of the coercive field on the residual stress and Sc concentration.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • aluminium
  • reactive
  • nitride
  • texture
  • size-exclusion chromatography
  • crystallinity
  • Scandium