People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Momand, Jamo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenumcitations
- 2022Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenumcitations
- 2022Phase Separation in Ge-Rich GeSbTe at Different Length Scales: Melt-Quenched Bulk versus Annealed Thin Filmscitations
- 2022Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin filmscitations
- 2022Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin filmscitations
- 2021Polytriphenylamine composites for energy storage electrodes:Effect of pendant vs. backbone polymer architecture of the electroactive groupcitations
- 2021Pulsed laser deposited stoichiometric GaSb films for optoelectronic and phase change memory applicationscitations
- 2021Pulsed laser deposited stoichiometric GaSb films for optoelectronic and phase change memory applicationscitations
- 2021Controlling phase separation in thermoelectric Pb1-xGexTe to minimize thermal conductivitycitations
- 2021Polytriphenylamine composites for energy storage electrodescitations
- 2020Single-Source, Solvent-Free, Room Temperature Deposition of Black γ-CsSnI 3 Filmscitations
- 2020Differences in Sb2Te3 growth by pulsed laser and sputter depositioncitations
- 2020Single‐Source, Solvent‐Free, Room Temperature Deposition of Black γ‐CsSnI3 Filmscitations
- 2019Chemical Solution Deposition of Ordered 2D Arrays of Room-Temperature Ferrimagnetic Cobalt Ferrite Nanodotscitations
- 2019High Resolution Imaging of Chalcogenide Superlattices for Data Storage Applicationscitations
- 2019Low temperature epitaxy of tungsten-telluride heterostructure filmscitations
- 2019High Resolution Imaging of Chalcogenide Superlattices for Data Storage Applications:Progress and Prospectscitations
- 2018Tailoring the epitaxy of Sb2Te3 and GeTe thin films using surface passivationcitations
- 2017Formation of resonant bonding during growth of ultrathin GeTe filmscitations
- 2016Crystallization Kinetics of Supercooled Liquid Ge-Sb Based on Ultrafast Calorimetrycitations
- 2016Ordered Peierls distortion prevented at growth onset of GeTe ultra-thin filmscitations
- 2014Reversible amorphous-crystalline phase changes in a wide range of Se1-xTex alloys studied using ultrafast differential scanning calorimetrycitations
Places of action
Organizations | Location | People |
---|
article
High Resolution Imaging of Chalcogenide Superlattices for Data Storage Applications
Abstract
<p>Phase-change materials (PCMs) based on Ge–Sb–Te alloys are a strong contender for next-generation memory technology. Recently, PCMs in the form of GeTe–Sb<sub>2</sub>Te<sub>3</sub>superlattices (CSLs) have shown superior performance compared to ordinary PCM memory, which relies on switching between amorphous and crystalline phases. Although detailed atomic structure switching models have been developed with the help of ab-initio simulations, there is still fierce scientific debate concerning the experimental verification of the actual crystal structures pertaining to the two CSL memory states. One of the strongest techniques to provide this information is (scanning) transmission electron microscopy ((S)TEM). The present article reviews the analyses of CSLs using TEM-based techniques published during the last seven years since the seminal 2011 Nature Nanotechnology paper of Simpson et al., showing the superior performance of the CSL memory. It is critically reviewed what relevant information can be extracted from the (S)TEM results, also showing the impressive progress that has been achieved in a relatively short time frame. Finally, an outlook is given including several open questions. Although debate on actual switching mechanism in CSL memory is clearly not settled, still there is consensus in this field that CSL research has a bright future.</p>