Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gall, Sylvain Le

  • Google
  • 6
  • 23
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2020Mesopore Formation and Silicon Surface Nanostructuration by Metal-Assisted Chemical Etching With Silver Nanoparticles21citations
  • 2017Advances in silicon surface texturization by metal assisted chemical etching for photovoltaic applications1citations
  • 2017Coupling Optical and Electrical Modelling for the study of a-Si:H-based nanowire Array Solar Cells3citations
  • 2016Tunable Nanostructuration of Si by MACE with Pt nanoparticles under an applied external biascitations
  • 2016Controlled elaboration of high aspect ratio cone-shape pore arrays in silicon by metal assisted chemical etchingcitations
  • 2004Microstructuration of Silicon Surfaces Using Nanoporous Gold Electrodescitations

Places of action

Chart of shared publication
Pinna, Elisa
1 / 4 shared
Mula, Guido
1 / 12 shared
Cachet-Vivier, Christine
4 / 11 shared
Torralba, Encarnacion
2 / 4 shared
Bastide, Stéphane
5 / 16 shared
Lachaume, Raphaël
5 / 11 shared
Magnin, Vincent
3 / 9 shared
Harari, Joseph
4 / 12 shared
Assimi, Taha
1 / 1 shared
Fouchier, Marin
1 / 2 shared
Vilcot, Jean-Pierre
4 / 18 shared
Halbwax, Mathieu
4 / 19 shared
Levtchenko, Alexandra
1 / 2 shared
Djebbour, Zakaria
1 / 3 shared
Michallon, Jérôme
1 / 3 shared
Collin, Stéphane
1 / 21 shared
Kleider, Jean-Paul
1 / 28 shared
Alvarez, J.
1 / 15 shared
Torralba-Penalver, Encarnacion
2 / 5 shared
Magnin, V.
1 / 4 shared
Cachet-Vivier, C.
1 / 2 shared
Torralba, E.
1 / 3 shared
Assimi, T. El
1 / 1 shared
Chart of publication period
2020
2017
2016
2004

Co-Authors (by relevance)

  • Pinna, Elisa
  • Mula, Guido
  • Cachet-Vivier, Christine
  • Torralba, Encarnacion
  • Bastide, Stéphane
  • Lachaume, Raphaël
  • Magnin, Vincent
  • Harari, Joseph
  • Assimi, Taha
  • Fouchier, Marin
  • Vilcot, Jean-Pierre
  • Halbwax, Mathieu
  • Levtchenko, Alexandra
  • Djebbour, Zakaria
  • Michallon, Jérôme
  • Collin, Stéphane
  • Kleider, Jean-Paul
  • Alvarez, J.
  • Torralba-Penalver, Encarnacion
  • Magnin, V.
  • Cachet-Vivier, C.
  • Torralba, E.
  • Assimi, T. El
OrganizationsLocationPeople

article

Coupling Optical and Electrical Modelling for the study of a-Si:H-based nanowire Array Solar Cells

  • Levtchenko, Alexandra
  • Lachaume, Raphaël
  • Djebbour, Zakaria
  • Gall, Sylvain Le
  • Michallon, Jérôme
  • Collin, Stéphane
  • Kleider, Jean-Paul
  • Alvarez, J.
Abstract

Coupled optical/electrical simulations have been performed on solar cells consisting in arrays of p‐i‐n radial nanowires based on crystalline p‐type silicon (c‐Si) core/hydrogenated amorphous silicon (a‐Si:H) shell heterojunctions. Three‐dimensional (3D) optical calculations based on rigorous coupled wave analysis (RCWA) are firstly performed and then coupled to a semiconductor device simulator that exploits the radial symmetry of the nanowires. By varying either the doping concentration of the c‐Si core, or the work function of the Al‐doped ZnO (AZO) back contact we can separate and originally highlight the contribution to the cells performance of the nanowires themselves (the radial cell) from the planar part in between the nanowires (the planar cell). We show that the short‐circuit current density (Jsc) only depends on the doping of the c‐Si core indicating that it is mainly influenced by the radial cell. On the contrary the open‐circuit voltage (Voc) is strongly affected by the back contact conditions (AZO work function), revealing an important impact of the interspacing between the nanowires on the characteristics of the entire nanowire array. We explain this strong influence of the back contact conditions by the fact that it determines the band‐bending in the a‐Si:H absorber shell touching the AZO, i.e. in the planar part. Therefore, it directly impacts the potential drop (Vbi) in the same area. For low AZO work functions, the dark current density (Jdark) is increased in the planar region, where Vbi is lower, which degrades the Voc of the entire cell.

Topics
  • density
  • impedance spectroscopy
  • amorphous
  • simulation
  • semiconductor
  • Silicon
  • current density