Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kopach, V. V.

  • Google
  • 3
  • 10
  • 5

Chernivtsi National University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Phase equilibria in Cd0.80Mn0.20Te solid solutionscitations
  • 2019Kinetic parameters of Cd0.85-xMnxZn0.15Te (x = 0.05-0.20) alloys melting and crystallization processescitations
  • 2014Kinetic parameters of Cd<sub>1‐x‐y</sub>Mn<sub>x</sub>Zn<sub>y</sub>Te alloys melting and crystallization processes5citations

Places of action

Chart of shared publication
Fochuk, P. M.
2 / 4 shared
Matviy, A. V.
2 / 2 shared
Kopach, O. V.
2 / 2 shared
Shcherbak, L. P.
2 / 2 shared
Rusnak, S. M.
2 / 2 shared
Kopach, O.
1 / 1 shared
James, R. B.
1 / 2 shared
Bolotnikov, A.
1 / 1 shared
Shcherbak, L.
1 / 1 shared
Fochuk, P.
1 / 1 shared
Chart of publication period
2021
2019
2014

Co-Authors (by relevance)

  • Fochuk, P. M.
  • Matviy, A. V.
  • Kopach, O. V.
  • Shcherbak, L. P.
  • Rusnak, S. M.
  • Kopach, O.
  • James, R. B.
  • Bolotnikov, A.
  • Shcherbak, L.
  • Fochuk, P.
OrganizationsLocationPeople

article

Kinetic parameters of Cd<sub>1‐x‐y</sub>Mn<sub>x</sub>Zn<sub>y</sub>Te alloys melting and crystallization processes

  • Kopach, O.
  • James, R. B.
  • Bolotnikov, A.
  • Shcherbak, L.
  • Kopach, V. V.
  • Fochuk, P.
Abstract

<jats:title>Abstract</jats:title><jats:p>The knowledge about parameters of melting and crystallization processes is required for controlled growth of ternary or quaternary single crystals from the melts. The differential thermal analysis method was used for investigation of the melting and crystallization kinetic parameters of Cd<jats:sub>1‐x‐y</jats:sub>Mn<jats:sub>x</jats:sub>Zn<jats:sub>y</jats:sub>Te alloys (<jats:italic>x</jats:italic> = 0.05–0.25, <jats:italic>y</jats:italic> = 0.05, 0.10). Two different ways of sample thermal processing allow us to study the supercooling‐superheating dependencies and the volume fraction of quasi‐solid phase (clusters) depending on the melt holding temperature and time. “Negative” supercooling of Cd<jats:sub>1‐x‐y</jats:sub>Mn<jats:sub>x</jats:sub>Zn<jats:sub>y</jats:sub>Te melts was observed when superheating of the melts don't exceed 20 K after their melting start. The su‐ percooling values of Cd<jats:sub>1‐x‐y</jats:sub>Mn<jats:sub>x</jats:sub>Zn<jats:sub>y</jats:sub>Te melts decreased with increasing <jats:italic>x</jats:italic> (i.e. Mn content). The change of the melts holding time from 10 to 60 min has no effect on the supercooling values. Volume fraction of Cd<jats:sub>1‐x‐y</jats:sub>Mn<jats:sub>x</jats:sub>Zn<jats:sub>y</jats:sub>Te alloys clusters existing in the melt decreased with the holding temperature increasing. Full homogenization occurred only after of Cd<jats:sub>0.95‐x</jats:sub>Mn<jats:sub>x</jats:sub>Zn<jats:sub>0.05</jats:sub>Te melts superheating higher than 1385 K, below this temperature melts exist in semiliquid state. The volume fraction of the quasi‐solid phase is smaller if the melt was heated at 10 K/min than after heating at 5 K/min to the same temperature. Melting temperature of Cd<jats:sub>0.95‐x</jats:sub>Mn<jats:sub>x</jats:sub>Zn<jats:sub>0.05</jats:sub>Te alloys decreased with Mn content increasing. (© 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</jats:p>

Topics
  • impedance spectroscopy
  • cluster
  • single crystal
  • melt
  • homogenization
  • crystallization
  • melting temperature
  • differential thermal analysis