Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Miranda, S. M. C.

  • Google
  • 2
  • 15
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Impurity-enhanced solid-state amorphization11citations
  • 2014Sequential multiple-step europium ion implantation and annealing of GaN9citations

Places of action

Chart of shared publication
Joly, V.
1 / 2 shared
Vantomme, A.
1 / 15 shared
Stiphout, K. Van
1 / 1 shared
Geenen, F. A.
1 / 1 shared
Detavernier, C.
1 / 16 shared
Temst, K.
1 / 9 shared
Santos, N. M.
1 / 4 shared
Demeulemeester, J.
1 / 3 shared
Pereira, L. M. C.
1 / 2 shared
Vantomme, André
1 / 41 shared
Odonnell, Kevin Peter
1 / 1 shared
Alves, Eduardo Jorge
1 / 1 shared
Lorenz, Katharina
1 / 8 shared
Boćkowski, Michał X.
1 / 1 shared
Edwards, Paul R.
1 / 8 shared
Chart of publication period
2019
2014

Co-Authors (by relevance)

  • Joly, V.
  • Vantomme, A.
  • Stiphout, K. Van
  • Geenen, F. A.
  • Detavernier, C.
  • Temst, K.
  • Santos, N. M.
  • Demeulemeester, J.
  • Pereira, L. M. C.
  • Vantomme, André
  • Odonnell, Kevin Peter
  • Alves, Eduardo Jorge
  • Lorenz, Katharina
  • Boćkowski, Michał X.
  • Edwards, Paul R.
OrganizationsLocationPeople

article

Sequential multiple-step europium ion implantation and annealing of GaN

  • Miranda, S. M. C.
  • Vantomme, André
  • Odonnell, Kevin Peter
  • Alves, Eduardo Jorge
  • Lorenz, Katharina
  • Boćkowski, Michał X.
  • Edwards, Paul R.
Abstract

Sequential multiple Eu ion implantations at low fluence (1×1013 cm-2 at 300 keV) and subsequent rapid thermal annealing (RTA) steps (30 s at 1000 °C or 1100 °C) were performed on high quality nominally undoped GaN films grown by metal organic chemical vapour deposition (MOCVD) and medium quality GaN:Mg grown by hydride vapour phase epitaxy (HVPE). Compared to samples implanted in a single step, multiple implantation/annealing shows only marginal structural improvement for the MOCVD samples, but a significant improvement of crystal quality and optical activation of Eu was achieved in the HVPE films. This improvement is attributed to the lower crystalline quality of the starting material, which probably enhances the diffusion of defects and acts to facilitate the annealing of implantation damage and the effective incorporation of the Eu ions in the crystal structure. Optical activation of Eu3+ ions in the HVPE samples was further improved by high temperature and high pressure annealing (HTHP) up to 1400 °C. After HTHP annealing the main room temperature cathodo- and photoluminescence line in Mg-doped samples lies at ∼ 619 nm, characteristic of a known Mg-related Eu3+ centre, while after RTA treatment the dominant line lies at ∼ 622 nm, typical for undoped GaN:Eu. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Topics
  • Deposition
  • impedance spectroscopy
  • photoluminescence
  • phase
  • defect
  • annealing
  • activation
  • Europium