Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pinnisch, M.

  • Google
  • 1
  • 3
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Transfer characteristic of zinc nitride based thin film transistors16citations

Places of action

Chart of shared publication
Schwarz, R.
1 / 15 shared
Bhattacharyya, Sr
1 / 5 shared
Ayouchi, R.
1 / 16 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Schwarz, R.
  • Bhattacharyya, Sr
  • Ayouchi, R.
OrganizationsLocationPeople

document

Transfer characteristic of zinc nitride based thin film transistors

  • Schwarz, R.
  • Bhattacharyya, Sr
  • Ayouchi, R.
  • Pinnisch, M.
Abstract

Polycrystalline zinc nitride (Zn3N2) thin films were prepared on quartz and aluminum tin oxide /indium tin oxide (ATO/ITO) and SiO2-covered crystalline silicon by reactive pulsed laser ablation (PLD) of a metallic zinc target using a pulsed Nd:YAG laser, assisted by a 13.56 MHz radio-frequency (RF) nitrogen plasma. The microstructural, optical and electrical properties of the as-deposited films were studied by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), low-temperature photoluminescence (PL), optical transmittance, and field effect transistor I-V measurements. SEM revealed a compact and crack-free film surface. XRD study indicated that the Zn3N2 films deposited at 673 K substrate temperature were cubic, with lattice constant a = 0.97 nm and having no preferred orientation. PL spectra taken at 4.2 K show a 7-9 meV wide exciton-related peak at 3.59 eV. The optical absorption coefficient, estimated from the transmission spectra using Beer's law, was utilized to determine the optical band gap of the films. The Zn3N2 showed a direct band gap of similar to 3.2 eV at room temperature. Transparent field effect transistor structures with a 200 nm thick Zn3N2 film as active channel layer exhibited non-linear I-V transfer characteristics, which is typical of devices having a large density of interface trap states. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Topics
  • density
  • impedance spectroscopy
  • surface
  • photoluminescence
  • scanning electron microscopy
  • x-ray diffraction
  • thin film
  • aluminium
  • zinc
  • reactive
  • crack
  • Nitrogen
  • nitride
  • Silicon
  • tin
  • Indium
  • laser ablation