Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kivaras, Tomas

  • Google
  • 1
  • 8
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2009Electrical transport in carbon nanotube coatings of silica fibers3citations

Places of action

Chart of shared publication
Helburn, Robin
1 / 1 shared
Galibert, Jean
1 / 1 shared
Samuilov, Vladimir
1 / 2 shared
Valusis, Gintaras
1 / 2 shared
Dauzhenka, Taras
1 / 1 shared
Ksenevich, Vitaly
1 / 2 shared
Kasalynas, Irmantas
1 / 1 shared
Seliuta, Dalius
1 / 2 shared
Chart of publication period
2009

Co-Authors (by relevance)

  • Helburn, Robin
  • Galibert, Jean
  • Samuilov, Vladimir
  • Valusis, Gintaras
  • Dauzhenka, Taras
  • Ksenevich, Vitaly
  • Kasalynas, Irmantas
  • Seliuta, Dalius
OrganizationsLocationPeople

article

Electrical transport in carbon nanotube coatings of silica fibers

  • Kivaras, Tomas
  • Helburn, Robin
  • Galibert, Jean
  • Samuilov, Vladimir
  • Valusis, Gintaras
  • Dauzhenka, Taras
  • Ksenevich, Vitaly
  • Kasalynas, Irmantas
  • Seliuta, Dalius
Abstract

<jats:title>Abstract</jats:title><jats:p>Electrical properties and magnetoresistance (MR) of single‐wall carbon nanotubes coatings of silica fibers were investigated in temperature range 1.8‐300 K and magnetic fields up to 8 T. The dependence of resistance vs temperature, <jats:italic>R</jats:italic> (<jats:italic>T</jats:italic>), and MR within the range of 2∼8 K can be explained by a 3D variable range hopping transport. In the temperature range of 8‐300 K,<jats:italic> R</jats:italic> (<jats:italic>T</jats:italic>) dependencies can be interpreted by fluctuation‐induced tunnelling model. The determined carrier transport features were supported by additional measurements of change in conductivity in strong 10 GHz microwave fields and measurements of THz radiation induced photocurrent at various lattice temperatures. The features of carrier transport in SWCNTs‐SiO<jats:sub>2</jats:sub> coatings are compared with those in free‐standing single walled carbon nanotube fibers. (© 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</jats:p>

Topics
  • Carbon
  • nanotube