Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Miller, N.

  • Google
  • 3
  • 20
  • 75

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2011Mg doped InN and confirmation of free holes in InN45citations
  • 2009Electrical and electrothermal transport in InN11citations
  • 2008Low-temperature grown compositionally graded InGaN films19citations

Places of action

Chart of shared publication
Iwamoto, R.
1 / 1 shared
Mayer, M. A.
2 / 5 shared
Walukiewicz, W.
3 / 87 shared
Wang, K.
1 / 27 shared
Nanishi, Y.
1 / 9 shared
Yamaguchi, T.
1 / 6 shared
Araki, T.
1 / 8 shared
Iii, J. W. Ager
2 / 18 shared
Haller, E. E.
3 / 30 shared
Koblmüller, G.
1 / 3 shared
Liliental-Weber, Z.
2 / 25 shared
Iii, H. M. Smith
1 / 1 shared
Hawkridge, M. E.
1 / 2 shared
Gallinat, C.
1 / 1 shared
Jones, R. E.
2 / 8 shared
Speck, J. S.
1 / 2 shared
Schaff, W. J.
1 / 10 shared
Williamson, T. L.
1 / 1 shared
Hoffbauer, M. A.
1 / 1 shared
Ager, J. W.
1 / 11 shared
Chart of publication period
2011
2009
2008

Co-Authors (by relevance)

  • Iwamoto, R.
  • Mayer, M. A.
  • Walukiewicz, W.
  • Wang, K.
  • Nanishi, Y.
  • Yamaguchi, T.
  • Araki, T.
  • Iii, J. W. Ager
  • Haller, E. E.
  • Koblmüller, G.
  • Liliental-Weber, Z.
  • Iii, H. M. Smith
  • Hawkridge, M. E.
  • Gallinat, C.
  • Jones, R. E.
  • Speck, J. S.
  • Schaff, W. J.
  • Williamson, T. L.
  • Hoffbauer, M. A.
  • Ager, J. W.
OrganizationsLocationPeople

article

Low-temperature grown compositionally graded InGaN films

  • Williamson, T. L.
  • Hoffbauer, M. A.
  • Liliental-Weber, Z.
  • Walukiewicz, W.
  • Jones, R. E.
  • Miller, N.
  • Haller, E. E.
  • Ager, J. W.
Abstract

A new thin film growth technique known as energetic neutral atomic-beam lithography/epitaxy (ENABLE) provides a large energetic N atom flux and eliminates the need for high substrate temperatures as compared to molecular beam epitaxy, making isothermal growth over the entire InGaN alloy composition range possible without phase separation. 500-800 nm thick compositionally graded InGaN films were grown by ENABLE at ∼450°C with the following structure types: (1) with the Ga-rich material on the surface and (2) with the Inrich material on the surface. Rutherford backscattering spectrometry, transmission electron microscopy, X-ray diffraction, absorption spectroscopy, photoluminescence, and Hall effect measurements were used to assess the thickness, composition, crystalline quality, and optical and electrical properties of the films. The results establish the new ENABLE method as uniquely capable of growing compositionally graded InGaN films and, in the future, InN/GaN heterostructures. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.

Topics
  • surface
  • photoluminescence
  • phase
  • x-ray diffraction
  • thin film
  • transmission electron microscopy
  • spectrometry
  • lithography
  • alloy composition
  • Rutherford backscattering spectrometry