Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hadjesi, T.

  • Google
  • 1
  • 5
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Photoluminescence from undoped silicon after chemical etching combined with metal plating22citations

Places of action

Chart of shared publication
Gabouze, N.
1 / 7 shared
Yamamoto, N.
1 / 2 shared
Sakamaki, K.
1 / 1 shared
Kooij, Ernst Stefan
1 / 17 shared
Ababou, A.
1 / 1 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Gabouze, N.
  • Yamamoto, N.
  • Sakamaki, K.
  • Kooij, Ernst Stefan
  • Ababou, A.
OrganizationsLocationPeople

article

Photoluminescence from undoped silicon after chemical etching combined with metal plating

  • Gabouze, N.
  • Yamamoto, N.
  • Sakamaki, K.
  • Hadjesi, T.
  • Kooij, Ernst Stefan
  • Ababou, A.
Abstract

Photoluminescent porous layers were formed on highly resistive p-type silicon by metal-assisted chemical etching using Na2S2O8 as an oxidizing agent. A thin layer of Ag was deposited on the (100) Si surface prior to immersion in a solution of HF and Na2S2O8. The morphology of the porous silicon (PS) layer formed by this method as a function of etching time was investigated by scanning electron microscopy (SEM). It shows that the surface is porous and the thickness of PS layer increases with etching time and is not limited as observed with the electrochemical method. Energy-dispersive X-ray (EDX) was used to analyse the chemical composition of PS layers. The EDX spectra show that the metal is not present on the PS surface after etching. Photoluminescence (PL) from metal-assisted chemically etched layers was measured using a He-Cd laser as excitation source. It was found that the PL intensity increases with increasing etching time. However, it was shown that after an etching time of 30min, the fit of the PL spectrum using Gaussian functions exhibits two peaks centred at 617 nm and 646 nm. This behaviour was attributed to an increase of the silicon nanostructure density.

Topics
  • porous
  • density
  • impedance spectroscopy
  • surface
  • photoluminescence
  • scanning electron microscopy
  • chemical composition
  • Silicon
  • etching
  • Energy-dispersive X-ray spectroscopy