People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Massabuau, Fcp
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Constant Photocurrent Method to Probe the Sub‐Bandgap Absorption in Wide Bandgap Semiconductor Films: The Case of α‐Ga<sub>2</sub>O<sub>3</sub>citations
- 2024Constant Photocurrent Method to Probe the Sub-Bandgap Absorption in Wide Bandgap Semiconductor Films: The Case of α-Ga 2 O 3
- 2021Defect structures in (001) zincblende GaN/3CSiC nucleation layerscitations
- 2021Defect structures in (001) zincblende GaN/3C-SiC nucleation layerscitations
- 2021Directly correlated microscopy of trench defects in InGaN quantum wellscitations
- 2020Piezoelectric III-V and II-VI semiconductorscitations
- 2020Integrated wafer scale growth of single crystal metal films and high quality graphenecitations
- 2020Dislocations as channels for the fabrication of sub-surface porous GaN by electrochemical etchingcitations
- 2019Investigation of MOVPE-grown zincblende GaN nucleation layers on 3CSiC/Si substratescitations
- 2019Thick adherent diamond films on AlN with low thermal barrier resistancecitations
- 2019Low temperature growth and optical properties of α-Ga2O3 deposited on sapphire by plasma enhanced atomic layer depositioncitations
- 2017Mechanisms preventing trench defect formation in InGaN/GaN quantum well structures using hydrogen during GaN barrier growth
- 2017X-ray diffraction analysis of cubic zincblende III-nitrides
- 2017Dislocations in AlGaN: core structure, atom segregation, and optical propertiescitations
- 2014Structure and strain relaxation effects of defects in InxGa1-xN epilayerscitations
- 2014Structure and strain relaxation effects of defects in In x Ga 1-x N epilayers
- 2013Correlations between the morphology and emission properties of trench defects in InGaN/GaN quantum wellscitations
- 2012Morphological, structural, and emission characterization of trench defects in InGaN/GaN quantum well structurescitations
- 2011The effects of Si doping on dislocation movement and tensile stress in GaN filmscitations
Places of action
Organizations | Location | People |
---|
article
Constant Photocurrent Method to Probe the Sub‐Bandgap Absorption in Wide Bandgap Semiconductor Films: The Case of α‐Ga<sub>2</sub>O<sub>3</sub>
Abstract
<jats:p>The optical absorption coefficient is one of the fundamental properties of semiconductors and is critical to the development of optical devices. Herein, a revival of the constant photocurrent method is presented to measure sub‐bandgap absorption in wide bandgap semiconductor films. The method involves maintaining a constant photocurrent by continually adjusting the impinging photon flux across the energy spectrum. Under such conditions, the reciprocal of the photon flux for uniformly absorbed light is proportional to the absorption coefficient. This method is applied to α‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and reveals that it can access the absorption coefficient from 1 × 10<jats:sup>5</jats:sup> cm<jats:sup>−1</jats:sup> at the band edge (5.3 eV) to 0.8 cm<jats:sup>−1</jats:sup> close to mid‐bandgap (2.7 eV). Changes in the steepness of the absorption curve in the sub‐bandgap region are in excellent agreement with defect states of α‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> reported by deep level transient spectroscopy, indicating that the technique shows promise as a probe of energetically distributed defect states in thin film wide bandgap semiconductors.</jats:p>