Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thomas, Victor

  • Google
  • 1
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Effect of Internal Pressure on Incipient Ferroelectricity of Nanoconfined Water Molecules Observed in Hydrothermally Grown Beryl Crystals2citations

Places of action

Chart of shared publication
Uskov, Vladimir
1 / 1 shared
Chan, Yuk Tai
1 / 1 shared
Savinov, Maxim
1 / 5 shared
Dressel, Martin
1 / 7 shared
Abramov, Pavel
1 / 2 shared
Uykur, Ece
1 / 5 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Uskov, Vladimir
  • Chan, Yuk Tai
  • Savinov, Maxim
  • Dressel, Martin
  • Abramov, Pavel
  • Uykur, Ece
OrganizationsLocationPeople

article

Effect of Internal Pressure on Incipient Ferroelectricity of Nanoconfined Water Molecules Observed in Hydrothermally Grown Beryl Crystals

  • Uskov, Vladimir
  • Chan, Yuk Tai
  • Savinov, Maxim
  • Thomas, Victor
  • Dressel, Martin
  • Abramov, Pavel
  • Uykur, Ece
Abstract

<jats:sec><jats:label /><jats:p>Quasistatic dielectric permittivity of D<jats:sub>2</jats:sub>O type I molecules (electric dipole moment perpendicular to the crystallographic <jats:italic>c</jats:italic>‐axis) within hydrothermally grown beryl crystals characterized by different internal pressure and content of D<jats:sub>2</jats:sub>O type II molecules (dipole moment parallel to the <jats:italic>c</jats:italic>‐axis) is measured at temperatures 4–300 K. All crystals are found to display quantum paraelectric behavior of the D<jats:sub>2</jats:sub>O‐I molecular subsystem permittivity, that is, permittivity growth while cooling from room temperature followed by saturation below 15–40 K. Processing the data with the Barrett expression shows that excess internal pressure and excess content of D<jats:sub>2</jats:sub>O‐II molecules lead to an increase in quantum temperature <jats:italic>T</jats:italic><jats:sub>1</jats:sub> and a decrease in the Curie constant <jats:italic>C</jats:italic>, with the Curie temperature <jats:italic>T</jats:italic><jats:sub>C</jats:sub> remaining unchanged. The discovered strengthening of quantum effects (growth of <jats:italic>T</jats:italic><jats:sub>1</jats:sub>) within an ensemble of dipole–dipole‐coupled D<jats:sub>2</jats:sub>O‐I molecules is associated with an enhanced azimuthal tunneling of these molecules within the hexagonal localizing potential. The data indicate the possibility of using crystal growth conditions to “tune” the strength of quantum effects in the network of polar water molecules, which provides a workbench for further studies of exotic phases of a lattice of coupled “point” electric dipoles.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • phase
  • strength
  • size-exclusion chromatography
  • Curie temperature