People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thomas, Victor
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Effect of Internal Pressure on Incipient Ferroelectricity of Nanoconfined Water Molecules Observed in Hydrothermally Grown Beryl Crystals
Abstract
<jats:sec><jats:label /><jats:p>Quasistatic dielectric permittivity of D<jats:sub>2</jats:sub>O type I molecules (electric dipole moment perpendicular to the crystallographic <jats:italic>c</jats:italic>‐axis) within hydrothermally grown beryl crystals characterized by different internal pressure and content of D<jats:sub>2</jats:sub>O type II molecules (dipole moment parallel to the <jats:italic>c</jats:italic>‐axis) is measured at temperatures 4–300 K. All crystals are found to display quantum paraelectric behavior of the D<jats:sub>2</jats:sub>O‐I molecular subsystem permittivity, that is, permittivity growth while cooling from room temperature followed by saturation below 15–40 K. Processing the data with the Barrett expression shows that excess internal pressure and excess content of D<jats:sub>2</jats:sub>O‐II molecules lead to an increase in quantum temperature <jats:italic>T</jats:italic><jats:sub>1</jats:sub> and a decrease in the Curie constant <jats:italic>C</jats:italic>, with the Curie temperature <jats:italic>T</jats:italic><jats:sub>C</jats:sub> remaining unchanged. The discovered strengthening of quantum effects (growth of <jats:italic>T</jats:italic><jats:sub>1</jats:sub>) within an ensemble of dipole–dipole‐coupled D<jats:sub>2</jats:sub>O‐I molecules is associated with an enhanced azimuthal tunneling of these molecules within the hexagonal localizing potential. The data indicate the possibility of using crystal growth conditions to “tune” the strength of quantum effects in the network of polar water molecules, which provides a workbench for further studies of exotic phases of a lattice of coupled “point” electric dipoles.</jats:p></jats:sec>