Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Elloh, Van W.

  • Google
  • 1
  • 8
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Electronic and Magnetic Properties of Transition Metal‐Doped MoS<sub>2</sub> Monolayer: First‐Principles Calculations1citations

Places of action

Chart of shared publication
Abavare, Eric K. K.
1 / 1 shared
Kwakye-Awuah, Bright
1 / 1 shared
Britwum, Akyana
1 / 2 shared
Martin, Henry
1 / 1 shared
Yaya, Abu
1 / 8 shared
Labik, Linus K.
1 / 1 shared
Nunoo, Oswald Ashirifi
1 / 1 shared
Boakye, Dennis
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Abavare, Eric K. K.
  • Kwakye-Awuah, Bright
  • Britwum, Akyana
  • Martin, Henry
  • Yaya, Abu
  • Labik, Linus K.
  • Nunoo, Oswald Ashirifi
  • Boakye, Dennis
OrganizationsLocationPeople

article

Electronic and Magnetic Properties of Transition Metal‐Doped MoS<sub>2</sub> Monolayer: First‐Principles Calculations

  • Abavare, Eric K. K.
  • Elloh, Van W.
  • Kwakye-Awuah, Bright
  • Britwum, Akyana
  • Martin, Henry
  • Yaya, Abu
  • Labik, Linus K.
  • Nunoo, Oswald Ashirifi
  • Boakye, Dennis
Abstract

<jats:p>Density functional theory in the framework of generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof to investigate the effects of some selected transition metal (TM) and rare‐earth metal (RE) dopants on the electronic and magnetic properties of a 2D molybdenum disulfide (MoS<jats:sub>2</jats:sub>) monolayer is reported. The results demonstrate that it is energetically stable to incorporate Ni and Cu in MoS<jats:sub>2</jats:sub> structure under Mo‐rich conditions. The pristine MoS<jats:sub>2</jats:sub> monolayer has a calculated direct bandgap of 1.70 eV and experiences significant reduction in the gap due to the defects. There is observed induced magnetic behavior due to the tight binding effect originating from the localized dopants and the nearest‐neighbor Mo atoms, with magnetic moments ranging between 0.82 and 3.00 μ<jats:sub>B</jats:sub>. Some of the dopants result inspin polarization which is useful for engineering spin filter devices on magnetic MoS<jats:sub>2</jats:sub> nanostructures.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • molybdenum
  • theory
  • defect
  • density functional theory