People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Allen, Joshua
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024First-principles calculations of intrinsic stacking fault energies and elastic properties in binary nickel alloyscitations
- 2018First-principles modeling of superlattice intrinsic stacking fault energies in Ni3Al based alloys
- 2018Photoresponse of inorganic-organic thin film composites based on chalcogenide glasses ; Foto-odezva anorganicko-organických tenkovrstevnatých kompozitů na bázi chalkogenidových skel
- 2017First-principles calculations of thermodynamic properties and planar fault energies in Co3X and Ni3X L12 compoundscitations
Places of action
Organizations | Location | People |
---|
article
First-principles calculations of thermodynamic properties and planar fault energies in Co3X and Ni3X L12 compounds
Abstract
We do Density Functional Theory based total-energy calculations of the L12 phase in Co3X and Ni3X compounds, X being a transition metal element. The lattice parameters, magnetic moments, formation enthalpies, are determined and compared with the available experimental data. The (111) superlattice intrinsic stacking fault energy (SISF), a crucial factor affecting materials strength and their mechanical behavior is calculated using the axial interaction model. We have applied the quasiharmonic Debye model in conjunction with first-principles in order to establish the temperature dependence of the lattice parameters and the (111) SISF energies. We investigate our prediction of a low formation enthalpy in the system Ni-25 at.%Zn by doing auxiliary simulations for the fcc random alloy at the composition 25 at.%Zn. Our simulations indicate that the elements: Ti, Zr, Hf, Nb and Ta can help stabilizing the promising and extremely important Co3Al0.5W0.5 alloy.