People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stokes, K. R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2016Electrochemical detection of cupric ions with boron-doped diamond electrode for marine corrosion monitoringcitations
- 2015Electrochemical detection of cupric ions with boron-doped diamond electrode for corrosion monitoring
- 2014Estimation of organic biocide leaching rate using a modified cavity jump diffusion modelcitations
- 2013A review of the manufacture, mechanical properties and potential applications of auxetic foamscitations
- 2013Developments in electrode materials and electrolytes for aluminium-air batteriescitations
- 2010Designing biomimetic antifouling surfacescitations
- 2010Electrodeposition and tribological characterisation of nickel nanocomposite coatings reinforced with nanotubular titanatescitations
- 2007Natural products for antifouling coatings
- 2005Corrosion, erosion and erosion–corrosion performance of plasma electrolytic oxidation (PEO) deposited Al2O3 coatingscitations
- 2005The corrosion of nickel–aluminium bronze in seawater [in A Century of Tafel’s Equation: A Commemorative Issue of Corrosion Science]citations
- 2003Erosion and erosion-corrosion performance of cast and thermally sprayed nickel-aluminium bronze
- 2001Erosion of aluminum based claddings on steel by sand in watercitations
Places of action
Organizations | Location | People |
---|
article
A review of the manufacture, mechanical properties and potential applications of auxetic foams
Abstract
Auxetics are a modern class of material fabricated by altering the material microstructure. Unlike conventional materials, auxetics exhibit a negative Poisson's ratio when subjected to tensile loading. These materials have gained popularity within the research community because of their enhanced properties, such as density, stiffness, fracture toughness and dampening. This paper provides a critical oversight of the auxetic field with particular emphasis to the auxetic foams, due to their low price, easy availability and desirable mechanical properties. Key areas discussed include the fabrication method, the effects played by different parameters (temperature, heating time, cell shape and size and volumetric compression ratio), microstructural models, mechanical properties and potential applications